New Approaches to the Crystal Collimation

Vincenzo Guidi, Andrea Mazzolari

Department of Physics and INFN - University of Ferrara

Victor Tikhomirov

Institute for Nuclear Problems Minsk, Republic of Belarus

Channeling 2010, Ferrara, 5 October 2010

Outline

Beam collimation by crystals
MVROC - Multiple Volume Reflection in One crystal (VR amplification by crystal axes)

Channeling fraction increase by the crystal cut
Crystal cut and MVROC application to crystal collimation

Conclusions

The planned LHC luminosity upgrade will intensify the beam halo formation

Crystals improve collimation efficiency

Crystals are used in either channeling or volume reflection regimes

First results on the SPS beam collimation with bent crystals W. Scandale et al, PLB 692(2010)78

Fig. 1 (Color online.) (a) Collimation scheme using a solid state primary collimatorscatterer (SC). (b) Collimation scheme with a bent crystal (BC) as a primary collimator. Halo particles are deflected and directed onto the absorber (TAL - Target Aperture Limitation) far from its edge.

Fig. 2. (Color online.) The UA9 experimental layout. The primary collimators - bent crystals C1 and C2 are located upstream the quadrupole QF518 (QF1). The TAL acting as a secondary collimator (absorber) is upstream the quadrupole QF 520 (QF2).

[^0]New effects

allowing to facilitate

crystal collimation

Multiple Volume Reflection from different inclined

 planes of One Crystal (MVROC)
Multiple Volume Reflection in One Crystal (MVROC)

 V.V. Tikhomirov, PLB 655(2007)217

Axes form many inclined reflecting planes

Horizon projections of the angles of reflection from different skew planes sum up giving rise to the MVROC effect while the vertical angles of reflection from symmetric skew planes, like (-101) and (0-11), mutually compensate.

Comoving reference frame rYz rotates with the normak bent axis direction when a particle moves through the crystal.

Proton motion in comoving reference plane

Protons are reflected from many different crystal plane sets in one crystal

Reflection angles from planes of one crystal vs bending radius

Reflection from different crystal planes increases VR angle about 5 times

First MVROC observation

W. Scandale et al, PLB 682(2009)274

MVROC indeed increases reflection angle 5 times

Channeling fraction increase

 by crystal cut or buried amorphous layerThe capture probability increase by crystal cut V.V.Tikhomirov, JINST, 2(2007)P08006

Transverse energy reduction by the cut - 1

The cut diminishes the potential energy conserving the transverse kinetic one

Transverse energy reduction by the cut - 2

Only $1-2 \%$ of protons avoid drastic transverse energy reduction by the cut

Phase space transformation by the cut

Protons cease to reach the high nuclear density regions

Channeling fraction increase by the cut

The cut increases channeling fraction from 85 to 99\%

Cut formation method

(110) Silicon Etching for High Aspect Ratio Comb Structures

*Seong-Hyok Kim, Sang-Hun Lee, Hyung-Taek Lim, and Yong-Kweon Kim School of Electrical Engineering, Seoul National University
San 56-1 Shilim-dong, Kwanak-gu, Seoul, 151-742, Korea Seung-Ki Lee
Department of Electrical Engineering, Dankook University 8, Hannam-dong, Yongsan-gu, Seoul 140-714, Korea

Fig 1. SEM photograph of alignment target after wet etching

Fig. 12 Fabricated comb structures
The width is $8 \mu \mathrm{~m}$, gap is $7 \mu \mathrm{~m}$ and height is about $150 \mu \mathrm{~m}$

Crystal cut can be produced by anisotropic etching

SIMOX Buried Oxide Layer can be used instead of crystal cut

V. Guidi, A. Mazzolari and V.V. Tikhomirov, J. Phys. D: Appl. Phys. 42(2009) 165301

- Thermal annealing restores silicon cristalline quality and creates a buried SiO_{2} layer,
- Interfaces between Si and SiO_{2} are well terminated,
- Misalignment between silicon layers in available SIMOX structures: less than $0.7 \AA / \mathrm{mm}$.

Crystal cut and MVROC application to crystal collimation

Inelastic loss fraction as a function of the crystal orientation

in the usual crystal, crystal with cut and a crystal in MVROC orientation*)

Crystal cut decreases inelastic losses MVROC increases angular acceptance

${ }^{*}$ MVROC orientation with $\Theta_{X 0}=-273$ urad, $\Theta_{Y 0}=100$ urad and $R=2 m$

Distributions of the impact parameter and number of the crystal transversals
 in usual Si crystal and crystal with cut ${ }^{*}$) at perfect alignment

The cut both increases the impact parameter and decreases the crystal transversals number at perfect alignment

[^1]
Distributions of the impact parameter and number of the crystal transversals in usual Si crystal ${ }^{*}$) and crystal in MVROC orientation ${ }^{+)}$ at rough alignment

MVROC both increases the impact parameter and decreases the crystal transversals number at rough alignment

$$
\left.\left.{ }^{*}\right) \Theta_{\mathrm{X} 0}=-70 \text { urad }!\quad+\right) \Theta_{\mathrm{X} 0}=-250 \text { urad, } \Theta_{\mathrm{Y} 0}=100 \text { urad and } \mathrm{R}=2 \mathrm{~m}
$$

CONCLUSIONS

Crystal collimation can be drastically facilitated by both crystal cut and MVROC process, namely:
both the impact parameter can be increased and the crystal transversals number can be decreased

- by crystal cut at perfect alignment
- by MVROC process at rough alignment

BOX layer "focuses" protons like a cut diminishing their transverse energy

$$
\begin{aligned}
& z_{1}=20 \mathrm{~nm} \\
& z_{2}=80 \mathrm{~nm} \\
& z_{3}=1 \mu \mathrm{~m} \\
& E_{p}=7 \mathrm{MeV}
\end{aligned}
$$

Grazing proton incidence allows to abserve the channeling eficiency increase at SPS energy of 400 GeV (H8 line)

Rutherford Backscattering allows to observe the channeling eficiency increase at low energies (6.1 MeV Legnaro)

First MVROC observation

W. Scandale et al, PLB 682(2009)274

MVROC indeed increases reflection angle 5 times

[^0]: Fig. 3. (Color online.) (1) The dependence of the S1-S2 telescope count on the angular position of the crystal 1 ; (2) The dependence of the number of inelastic nuclear interactions of protons in the crystal on its orientation angle obtained by simulation. The dot-dashed line shows the level of the beam losses for the amorphous orientation of the crystal.

[^1]: ${ }^{*}$) cut is between 2 and $8 \mathrm{um} . \mathrm{R}=6.67 \mathrm{~m}, \mathrm{I}=1 \mathrm{~mm}$

