

Mechanisms of High Energy Charged Particles Beam Deflection by bent crystals. Analogies

N.F. Shul'ga, V.I. Truten', I.V. Kirillin

Akhiezer Institute for Theoretical Physics of NNC KIPT, Kharkov, Ukraine shulga@kipt.kharkov.ua

- •Planar channeling in a bent crystal
- Volume reflection
- Stochastic mechanism
- •CERN Experiments

Mechanisms of Charged Particles Motion near <100> Axis

- a) Hyperchanneling (e⁺, e⁻)
- b) Stochastic multiple scattering
- c) Planar channeling
- d) Above barrier motion $\epsilon_{\perp} \sim U_{plmax}$
- e) Above barrier motion $\epsilon_{\perp} >> U_{plmax}$

Beam Deflection of fast Charged Particles due to Plane Channeling Effect in Bent Crystal

E.Tsyganov (1976)

"Volume reflection" effect

A. Taratin, S. Vorobiev 1987

Stochastic Mechanism of Beam Deflection

A.Greenenko, N. Shul'ga (1991)

Plane Channeling (Regular Motion) Lindhard (1965)

*p*_z=const≈p $\ddot{x} = -\frac{1}{E}\frac{\partial}{\partial x}U_{p}\left(x\right)$ $\varepsilon_{\perp p} = \frac{E \dot{x}^2}{2} + U_p(x)$

The Motion of Relativistic Particle in Central Field of Bent Crystal Planes

A. Akhiezer, N.Shul'ga, A.Greenenko et al., Sov.Phys. Usp. 1995 J. Ellison, Nucl. Phys. B 206 (1982) 205

Critical Radius of Channeling in Bent Crystal

$$\begin{aligned} U_{eff}(x) &= U_p(x) - x \frac{E}{R} \\ \frac{\partial U_{eff}(x)}{\partial x} \bigg|_{x=d/2} &= 0 \end{aligned}$$

$$R_c = d \frac{E}{2U_{\text{max}}}$$

 $E = 100 \, GeV, \quad U_{\text{max}} = 20 \, eV, \quad d = 0.2 \, nm, \implies R_c = 25 \, cm$

Beam Reflection from Bent Crystal Planes

N.F. Shul'ga, V.I. Truten', V.V. Boyko, 2009

$$r = R + x, \qquad b = R + \Delta$$
$$R >> x, \quad R >> \Delta, \quad E >> U_p$$

Analogy with scattering in central field

$$\vartheta(b) = \pi - 2M \int_{r_0}^{\infty} \frac{dr/r^2}{\sqrt{\left(\varepsilon - U_p\right)^2 - M^2/r^2 - m^2}}, \qquad M = pb$$

Scattering on one bent crystal plane

e⁺

e

Scattering by Nanotube

N.Shul'ga, V.Truten', (2000)

X. Artru et al., Phys. Reports, 2005

Potential for Beam Reflection by Bent Crystal Planes

$$\vartheta(b) = \pi - 2bv\sqrt{E} \int_{r_0}^{\infty} \frac{dr/r^2}{\sqrt{E - U_{eff}(r,b)}}$$
$$U_{eff}(r,\Delta) = E + 2U(x) + 2E(\Delta - x)/R$$

Condition for bending:

$$\alpha = \frac{4U_0}{E} \frac{R}{d} >> 1$$

Deflection Functions for Beam Reflection in Crystal

N.F. Shul'ga, V.I. Truten', V.V. Boyko, 2009

Motion of a fast positively charged particle (a) in the field of a single atomic string and (b) in the periodic field of atomic strings of a diamond crystal in the plane orthogonal to the <100> axis

Scattering by Atomic String N.Shul'ga, S.Fomin, V.Truten', (1984)

Multiple Scattering on Atomic strings

V. Beloshitskii, M. Kumakhov (1973), $\psi < \psi_c$ N. Shul'ga, V. Truten', S. Fomin (1982), $\psi > \psi_c$

Dynamical Chaos at Multiple Scattering for e $z = \psi / \psi_c$

A. Akhiezer, N Shul'ga, V. Truten', Physics Reports, 1991

Multiple Scattering in Oriented Crystal (simulation)

Si, <111>, E=450 GeV

Stochastic Mechanism of Beam Deflection

A. Greenenko, N. Shul'ga (1991)

A.A. Greenenko, N.F. Shul'ga, NIM B 173 (2001) 178

Beam Deflection in Bent Crystal (simulation)

Angular Distribution of 400 GeV Protons after Passing 2 mm of Bent Si Crystal with R=40 m

CERN experiment

Simulation results

W. Scandale et al. Phys. Rev. Lett. 101 (2008), 164801 21

Angular Distribution of 150 GeV π⁻-mesons after Passing 1.172 mm of Bent Si Crystal with R=40 m

Simulation results

W. Scandale et al. Physics Letters B 680 (2009) 301-304 22

Initial Conditions for Beam Deflection by Bent Crystals

Stochastic Mechanism of Beam Deflection $\psi_x \approx \psi_y < \psi_c$

Trajectories in Stochastic Mechanism of Particles Deflection in a Bent Crystal for E=300 GeV, R=100 m

Beam Deflection in a Bent Crystal (stochastic mechanism)

Beam Deflection in a Bent Crystal (stochastic mechanism)

Beams Initial Conditions

→ X

Stochastic Mechanism

У

 $\psi_x \approx \psi_v < \psi_c$

 $\psi_x < \theta_p, \quad \psi_y >> \psi_c$

Beam Deflection in a Bent Crystal (plane channeling) e+, E=400 GeV, R=40 m, 200 particles, $\psi_x \approx 0$, $\psi_v \approx 10 \psi_c$ 0 cm 0.2 cm 0.4 cm 400 e^+ 350 300 250 200 $\Theta_{y}, \mu rad$ 0.6 cm 0.8 cm 1 cm 400 350 300 250 200 100 150 200 250 50 100 150 200 250 50 100 150 200 250 50 0 0 0 $\Theta_x, \mu rad$

Beam Deflection in a Bent Crystal (plane channeling)

Beams Initial Conditions

Ζ

→ X

Stochastic Mechanism

y**,**

 $\psi_x \approx \psi_y < \psi_c$

Volume Reflection

Beam Deflection in a Bent Crystal (volume reflection)

CONCLUSIONS (analogies)

Bent crystal	Central field	
Plane channelling	Finite motion in the central field, precession,	
Volume reflection	Scattering in the central field, orbiting,	
Stochastic	Dynamical chaos Multiple scattering	

CONCLUSIONS (efficiency)

Plane channelling	<i>e</i> ⁺ <i>e</i> ⁻ -?	$R > a \frac{\varepsilon}{U_0}$	$\theta >> \theta_p$
Volume reflection	e ⁺ e ⁻ − ?	$R >> a \frac{\varepsilon}{U_0}$	$\theta \le 2 \theta_p$
Stochastic	e ⁺ e ⁻ - !!!	$\frac{l_{\perp}}{R\psi_c} \frac{L}{R\psi_c} < 1$	$\theta \sim 10 \psi_c$

Thank You for Your Attention

$$\theta_{out} \approx 2\theta_{p-\nu} \qquad \qquad \theta_{out} \approx 2\left(\theta_{p-s_1}\sin\left(\alpha_{s_1}\right) + \theta_{p-s_2}\sin\left(\alpha_{s_2}\right) + \theta_{p-\nu}\right)$$