Bremsstrahlung from relativistic bare heavy ions in single crystals

Allan H Sørensen

Channeling 2010

Channeling Radiation

²⁰⁸Pb penetrating Si target at $\gamma = 170$: $\psi_1 \ll 1/\gamma$ ($\gamma \psi_1 = 3.5 \times 10^{-3}$ for <111>)

Hence

- non-relativistic transverse motion for channeled ions in "rest frame"
- far from "constant field" (synchrotron) approximation

Typical lab-frequency in transverse motion corresponding to periodicity *d*

 $w_{\rm d} \sim 2\pi c \psi/d$ For $d \sim 2$ Å and $\psi \sim \psi_1$ this gives $\hbar w_{\rm d} \sim 2\pi \text{ keV} \times \psi_1$

 $\gamma = E/Mc^2$ Lorentz factor ψ_1 critical/ Lindhard angle

Channeling Radiation

²⁰⁸Pb penetrating Si target at $\gamma = 170$: $\psi_1 \ll 1/\gamma$ ($\gamma \psi_1 = 3.5 \times 10^{-3}$ for <111>)

Hence

- non-relativistic transverse motion for channeled ions in "rest frame"
- far from "constant field" (synchrotron) approximation

Typical lab-frequency in transverse motion corresponding to periodicity d

 $\omega_{\rm d} \sim 2\pi c \psi/d$ For $d \sim 2$ Å and $\psi \sim \psi_1$ this gives $\hbar \omega_{\rm d} \sim 2\pi \, {\rm keV} \times \psi_1$

Transformation to rest frame (time dilation):

$$\omega_{d}^{R} = \gamma \omega_{d}$$

Radiation in rest frame typically at ω_d^R Transformation to lab gives radiation at:

$$\omega \sim 2\gamma^2 \omega_{\rm d}$$

For ²⁰⁸Pb in Si <111> at γ = 170:

$$\psi_{1}$$
 = 21 µrad
 $\hbar \omega_{d} \sim 2\pi \text{ keV} \times \psi_{1}$ = 0.13 eV

$$\hbar\omega$$
 ~2 $\gamma^2\omega_{\rm d}$ ~ 7.5 keV

•

Way below characteristic energies for incoherent BS - typically MeV-GeV: leave channeling radiation here!

Procedure of BS calculation

Require projectile to stay intact, that is, restrict to noncontact collisions

$$b > R_1 + R_2 \equiv R_{\Sigma}$$

Impact parameter $b > R_{\Sigma}$ not complete guarantee for no break-up - but nearly *

- 1. EM field of moving object (nucleus, neutral atom, electron) nearly transverse at high γ ; shape as EM radiation pulse
- 2. Xsections for photon scattering extractable from literature
- * electromagnetic dissociation important near R_{Σ}

Four contributions to BS

The main contribution:

Scattering of the virtual photons of the *screened* target nucleus on the projectile in the rest frame *R* of the latter The other three:

- scattering of the virtual photons of the projectile on target nuclei
- 2. scattering of the virtual photons of the projectile on target electrons
- scattering of the virtual photons of target electrons on the projectile

 $x = \frac{\omega b}{\gamma c}$

Neutral target atom [Yukawa potential with screening length a_{TF}]:

$$x = \left[\left(\frac{\omega b}{\gamma c} \right)^2 + \left(\frac{b}{a_{\rm TF}} \right)^2 \right]^{1/2}$$

Effective b_{max} at given ω determined by $x \approx 1$ - screening important at high γ

Depletion at small b - EM dissociation?

Multiply scattering cross section on virtual photon intensity.

Since observed photon energy and exit angle in lab depend on scattered photon energy and angle i *R* we need differential cross section.

Projectile intact: require coherent action of constituents

- a) below $\omega_1 \approx 8$ MeV (typical binding) scattering on point nucleus : Thomson cross section for point nucleus
- b) beyond ω_1 and up to $\omega_2 = c/R$ coherent scattering on Z quasifree protons : Z^2 times Thomson cross section for p
- c) beyond ω₂ incoherent scattering on individual protons possible; *restrict to coherent part* to prevent break-up
 To b) add *resonance*

A useful fit to experimental data for elastic photon scattering on ²⁰⁸Pb:

$$\frac{d\sigma}{d\Omega'} = Z^2 r_p^2 \frac{1}{2} (1 + \cos^2 \psi')$$

$$\times \begin{cases} \left(\frac{ZM_p}{M}\right)^2; & \hbar\omega' < \hbar\omega_1 \\ 0.793 \frac{(\hbar\omega')^4}{((\hbar\omega')^2 - (E_m)^2)^2 + (\Gamma\hbar\omega')^2}; & \hbar\omega_1 < \hbar\omega' < \hbar\tilde{\omega}_2 \\ 1.93 \exp(-\epsilon(\hbar\omega' - \hbar\tilde{\omega}_2)\sin^2\frac{\psi'}{2}); & \hbar\tilde{\omega}_2 < \hbar\omega' \end{cases}$$

primes in Rresonance: $E_m = 13.7 \text{ MeV}$ r_p classical radius of proton $\Gamma = 4.15 \text{ MeV}$ ψ ' scattering angledepletion: $\epsilon = 0.11 \text{ MeV}^{-1}$

Transform back to lab!

Power spectrum for bare ²⁰⁸Pb on lead target at γ = 170:

Scaling with γ : peak position proportional to γ (ca. $2\gamma E_m$) peak height saturates due to screening at high γ

Energy loss

Bremsstrahlung can not compete!

For fractional energy loss $-E^{-1}dE/dx$ per cm multiply by 3.30×10^{-2}

Channeling

b-range never beyond screening length in target atom: BS essentially close-encounter process

When screening defines range at all energies where photon scattering cross section has support, dependence on ω and *b* factorizes:

$$\frac{d\chi}{d\hbar\omega d^2b} = \frac{d\chi}{d\hbar\omega} \times \frac{1}{2\pi\ln(Ca_{\rm TF}/R_{\Sigma})} \frac{1}{b^2} \left[\frac{b}{a_{\rm TF}}K_1\left(\frac{b}{a_{\rm TF}}\right)\right]^2$$
radiation cross section (power spectrum)

"Complete screening" - longest range!

The other three contributions to BS

1. Scattering of the virtual photons of the projectile on target nuclei 10.00 ²⁰⁸Pb on lead main $\gamma = 170$ dX/dħω (barn) 1.00 contribution 0.10 0.01 hypothetical 0.100 10.000 0.001 0.010 1.000 point nucleus $\hbar\omega$ (GeV)

Confined to MeV energies (GDR) Essentially no change with γ

The other three contributions to BS

Well below peak position in main component - but high yield Moves up in energy with γ but less fast than main contribution Compton processes add significantly to energy loss by BS at "moderate" γ :

Despite the extra contribution, BS never dominates energy loss of bare heavy ion penetrating matter

The other three contributions to BS

3.

Scattering of the virtual photons of target electrons on the projectile:

Compared to main contribution the change of incoming particle from screened target nucleus to electron implies

- 1. change of Z_t^2 to $Z_t \times 1^2$ in intensity (major)
- 2. adjustment of minimum impact parameter (minor)
- 3. off-set of scattering center (important in channeling)

Essentially, in amorhous medium the contribution from scattering virtual photons of target electrons may be obtained by multiplying main contribution by $1/Z_t$, that is, the sum of the two is:

 $(1 + 1/Z_t) \times main \ contribution$

The other three contributions to BS

3.

Scattering of the virtual photons of target electrons on the projectile:

Compared to main contribution the change of incoming particle from screened target nucleus to electron implies

- 1. change of Z_t^2 to $Z_t \times 1^2$ in intensity (major)
- 2. adjustment of minimum impact parameter (minor)
- 3. off-set of scattering center (important in channeling)

Essentially, in amorhous medium the contribution from scattering virtual photons of target electrons may be obtained by multiplying main contribution by $1/Z_t$, that is, the sum of the two is:

 $(1 + 1/Z_t) \times \text{main contribution} \longrightarrow \text{Si} +7\%$

Channeling

Scattering of the virtual photons of target electrons narrows dips somewhat due to wider range of positions in channel than nuclei + increase in minimum yield

Channeling

The Compton component; tests electron distribution - dip fills in

Pair Production

Electron-positron PP is also a close-collision process. But since

$$L_{\rm r} = \log(a_{\rm TF}/\rho)/\log(a_{\rm TF}/b_{\rm min})$$

is larger in PP than in BS due to larger b_{\min} , PP has the potential of showing narrower dips with higher minimum yield.

Ex $- ^{208}$ Pb on Si cooled to 100K:

BS:
$$L_r = 0.12$$

PP: $L_r = 0.20$

Only the action of target electrons brings a slight deviation from result for δ -function interaction

Not much different from BS in complete screening limit! Nuclear contribution slightly higher, total about the same. Credit: Tue V. Jensen