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(a:

Fig. 8.1 Model of lattice atoms showmg the atomic configuration in the diamond-1ype
Jattice viewed along {a) random. (&) planar. or (<) axial directions.
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Effects of Dislocations on Positron and Electron
Channeling



The Model




For a relativistic particle, the emission process is considered in the
of the particle moving through the crystal.

Since the crystal is rushing back at a speed -v, it appears Lorentz-
contracted

Lab Frame Vix)
R d O O O O O O
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The frequency in the rest frame

: R
s w =Y,
Z

The emission in the rest frame is observed in the lab frame

o~ Y 3 " W

z =1—/3’cosl9

The maximum frequency is in the forward direction,

lLe.,at8=0(8=1)

w =2y'w,
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(b)

FIG. 3. (a) Typlcal channel at some f{inite distance
from a dislocation, (b) Straight model channel replacing
the channel of part (a) and showing the coordinates used
in the text, Here, ! is the half-width of the channel, x_
is the amplitude in the first part of the channel, x, is the
equilibrium position about which the particle will oscil-
late, and x; and x; are the positions at which the particle
arrives after having traversed the first and second parts
of the channel, respectively,



Region |

The Schrodinger Equation for planar channeling

2 2 2 k>
— f ( J + J . )‘Pl(x,z)+;ma)2x2‘1’[(x,z) =E' W (x,2) E'=(n+1/2)hw+

2m

x> 0z
Equations for the transverse and longitudinal motion,
2 " 1

—— X' () +—mo’x’ X' (x) = ELX'(x)
2m 2

2m

2 "

-——Z' (2)=E{Z'(2)
1/4 2m

solutions -
X!(x) = (m_;o) 2"n)"? H (ax)e ™ '?
JU

ZI(Z) _ Aeikz + Be—ikz Where a= (mw/h)l/z

If x, is the initial amplitude of the channelon
Ui(x,z)=X (x-x,)Z"(2)
After including the effects of several transverse states
¥ (x,z) =A0X(f e" " + EB”’ X,f e 7

n=0




Region ||

The Schrédinger Equation

h2
VL (0. 0) + V() (p.9) = EM (p,g)

The transverse potential due to the curved atomic planes is also
assumed as harmonic around the central region

Vip) = %mw%p P

hZ
2m

1
P (p,p) + Emwz(p - ) ¥ (p.9) = 'Y (p, )

19 (p J )+ 1 9
pip\" dp) p*ag’
Separation of variables gives the azimuthal equation

F" (¢)=-u’F"(¢)

with solution F'l(@) = Ce™ + De™™

. . " 1 h2 2
and radial equation.  R" (,0)+—T E" - —maw’(p - p,)> -—H

2
R"(p)=0
h 2 2mp”* P)




Effective potential

V(&) ~f—m[ AP E-a,) +u,, ]

with E=p-p,
A=a'pl+3u’ ('’ 1o - p)* —— >,
) u'/p’
a,=p P,/ A N
2 2
DI Gt 0 BT MRS

min 2

Po -1

The frequency in the second region

' =(h/m) (Al pd)"

After including the effects of several transverse states

W' (x,2) = Y R,[C,e"" +D,e™]
m=0



Reqgion Il

The Schrédinger Equation

h2
2m

1
‘Pm(p,qa) + Emwz(p _ Po)2 lplll(p,(p) = EURPH](,O,CO)

19 (p J )+ 1 9
pop\ dp) p* g’
Separation of variables gives the azimuthal eqn.

F'" (@) = -w’F"(g)

with solution

F'" (@) = Ge™ + He ™

and radial eqgn.
2

" 2
R (p)+ 22| B~ Limar? (p - py )7 4 2K

h’ 2 2mp’ R =0




Effective potential

eff(g)"'ﬁ [ (A p)(E+a),) +up, ]
with A =a‘p; -3u’ (0t 1Yo - ) ——]
a,=u’p, /A yr 7
u, =2 Mj’“ ) o _Cmin)V L
Py A ! G

The frequency in the second region
"= (h/m)(A pg)"

After including the effects of several transverse states

W (x,z)= Y R,"[G,e" + H,e™]




Region IV

Region 4 is a perfect channel, wavefunction of positron in this region is
of the same form as in the 15t region

W (x,z)=X!"T, e""
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Boundary Conditions

Boundary | wi| - lpu‘
z=0 @=0
o’ B 1 ow”
aZ z=0 ’00 a(p @=0
Boundary |l
lp”‘ =1P111‘
P=¢q ¢=0
alp]] alp]]]
P Y=g P ¢=0
Boundary |11
qjm‘ =\P]V
Y=y z=t
1 alplll alp]V
Po 09 =0, 0z z=t

AX' + BX' =R"[C + D]

ikAX' —ikB X' = "L RU[C - D]
Po

R"[Ce™ + De ™= R"[G + H]

RY[Ce™ —De ™ =R"[G-H]

R[]][Geiu(p + He—iu(p] _ [X[Veikt

B RGe" + He ] = ikIX" ™
Po



The Reflection and Transmission co-efficient in terms of the
various parameters of the dislocation affected channel

. (=i + k2 ) Sin® 2ug,)
M — 2 2 2 2 2 2 2 2\2 - 2
‘A‘ k" u pyCos™ Qupy) +(u” +k"py ) Sin~(2uep,)
2 2 2
rf =1 o

4K’ poCos® 2ug,) +(u* + K py ) Sin® 2ug,)
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Equation of motion of a crystalline undulator

o~

«

c=x — a sin(k,2)

Where a is the amplitude of bending of the channel and

2T

ku —

Au

The dislocation affected region,




Region |

The Schrodinger Equation for planar channeling

AN
(5:1,’.2 U )22

) U (2, 2) + U(x) ¥ (z,2) = BT U (z,2)

2m

Ulx) = Vya?

— ‘,O (3.7 —a s I n ( ku :) ) ’

Region ||

Centrifugal force proportional to u?/p,° is responsible for the curved regions
of the channel.

u?=I(l+ 1) with [ as the orbital angular momentum quantum number and p,, is
the radius of curvature of the channel.

21



Assume a finite number of undulator periods in a length of the dislocation
affected region of the channel (low or medium dislocation concentration). If
Ay is the wavelength of the dislocation affected region and x, is the
corresponding amplitude of the waves

The equation of motion of both the waves
Ay = n A,

ry = a sin(nkyz)

) xy sin(kqz)

Superposition of the two waves gives
r=A sin(kqz + <)

Where A and ¢ are the effective amplitude and phase of the final wave.

A? = a®+ 2%+ 2ax4 cos|[(n — 1)kqz — @]
a sin[(n — 1)kgz] + x4 sing

tan '
an 4 C'O.S‘[(n _ 1)kdg] + x4 CcOSQ
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The Schrédinger Equation

P” 19 % 1 o Iy . Iy IFEE

With the channel periodically bent, the radius of curvature of the
dislocated affected region,

po = po — xq sin(kgz) + A sin(k,2)

T 7.36001 107,
7.36 x10” a
100
736 xlO—'; '0
7.36 x10
Po 7.35999 10”7

(nm)
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The variation of parameters of the dislocation affected region with
dislocation density,

Dislocation density 70 Radius of Curvature | 2z (Length of the curved part)
10" /em? 0.5x 10* nm 10.28 x 10° nm 6.28 x 10% nm
10%/em? 1.58 x 10 nm | 10.26 6x 10° nm 9.92 x 10% nm
10%/em? 0.5 x 10° nm 10.28 x 10" nm 6.28 x 10° nm

Range of various parameters of the periodically bent channel affected
with dislocation corresponding to a dislocation density of 7108/cm?,

a Ay R, E T4
(cm) (cm) (cm) (Mev) | amplitude of the dislocation wave
1 x 1077 3.14x 10~ | 2.5 x 1072 | 142.363 2.198 x 1073
10 x 1077 | 3.14x 107" | 2.56x 1077 | 14.236 2.198 x 10~
100 x 1077 | 3.14 x 107* | 2.5x 10" 1.412 2.198 x 10%
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The effective potential

he 2
Ve =Volp— po) + ——
g5 = Volp = po)” + 5~ e
D) .\ .
Verr(§) = 5 ﬁ(ﬁ — dp)° + Unin
E=p— 1o

26



The frequency of oscillation in the region,

With the effective wavefunction

U(p,p)=> R [C’mei“"*” + Dme“'“"‘o]

m=0

27



Reqgion 111

The effective potential

he N i
?— ~—(€ + (l ) + Dr,ni.n
Zm LpPo

Verp(§) =

N = =3u% + b5
5 pojt’

a’

P N

2
Ui = =~
‘man )\, ~ 2

(N + 1)

The frequency of oscillation in the region,

(M)
m/)\ po’
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The wavefunction in region IlI

III ) 111 -
v r Z R [ Tm€ Z#Y + Hm€ e

m
m=0

Region |V

UV (z,2) = X1V e

The reflection and transmission coeffcients
(=p2 + K2p0")* sin®(2puipo)
1212 pgc0s* (2ppg) + (12 + K2p0?)? sin? (2pupo)

4k po*
4k2 112 po* cos?(2pupo) + (12 + k2 po°)? sin®(2pupo)

|R* =

T =
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When A <A,

Range of various parameters of the periodically bent channel affected with
dislocation at A =2 A,

Dislocation Ad Ay a R, E
density (cm) (cm) (cm) (cm) (MeV)

1.5x10%/em? | 1.66x 10=* | 3.32x 1071 | 1 x 1077 | 2.8x 1072 150
10 x 1077 | 2.8x 1073 15
100 x 1077 | 2.8x 1074 1.5

Equation of motion,

T =x—a sin(k,vt)

A 2,2 oo (b
T =T+ ak,v" sin(k,vt)

1 .
— = ak? sin(k,vt)

R



2 ge
T +

Uz)— —x=0
my () R !

The maximum amplitude of oscillation

y my?v?

~ ¢eVoR

LTm =

And the equilibrium axis shifts to,

. mry?v?

o =
"7 2¢eVuR

The period of oscillation of the particle in the channel,

my \1/? 24eVy R
T:( ) ) S-z'.-n..-l{l— qd/ORcoq

2qeVy myZv?
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Region |

The Schrodlnger Equation for electron planar channeling

hz a / mVZ h2k2
p! UxX)P' (x,2) = E" W (x, 1 _ MY
2m ( x> 6‘22) (,2)+ U(0)¥ (%, 2) (x,2) E 2h°n? ¥ 2m
V
U(x)=- —* V,=2ZZ2,e’Nd,Ca’
X+a,

Equations for the transverse and longitudinal motion,

2 "
—h—XI (x)+ 4
2m X+a;
2 "
-—7' (2)=E/Z'(2)
2m

X'(x)=E.X"(x)

If x, is the initial amplitude of the channelon
Ui(x,z)=X (x-x,)Z"(2)
After including the effects of several transverse states, we can write
Y (x,z) = AOXI *oz 4 EB”’ X,f e 7

n=0 32



Reqgion |1

The Schrédinger Equation

h2
VL (0. 0) + V() (p.9) = EM (p,g)

The transverse potential due to the curved atomic planes is
assumed to shift with respect to lattice plane, due to curvature;

v
Vip)=- ;
(0= py) +a;
19 0 1 9 1 V 1 Ihgy 11
- - p + L4 (pa(p)_ : R4 (p,gﬂ)=E v (paqp)
om pap( ap) 0’ 0g’ (0 - py)+ar

Separation of variables gives the azimuthal equation

F" (¢)=-uw’F"(p)

with solution F'(@) = Ce™ + De "
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and radial equation
2m

h2M2

R" (p)+ E" +

h2

Effective potential for electron case

(p-py)+a, 2mp’

R"(p)=0

Dislocation affected channel

/3 12 "
‘;ff(f) = ‘)?72 { \2 A3 )\1_, N1\ /\413 + 4)\11 }
<M U poarp(26 + 32 1PoTF  PolTF
AN = —2a’py + 3pcary V(§)
N, = —a'pyarp + pPagpo X107
N = —2d'pyarp + prarepg

-2900

> Straight channel

-1.5 10741 7107'L57107

§

5107**1°107'1.5°107 "

—

After including the effects of several transverse states

W (x,z)= Y R,[C,e"" +D,e™]
m=0
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Reqgion Il

Effective potential is given by N = —2a'py — 3plaiy
Vi (€)= = { al N XN X = —d'pgare — papepo
R 2m | N2 43 [9¢ 4+ 221 Applad pla3 o o

After including the effects of several transverse states

W (x,z)= Y RG,e" + H,e "]
m=0

Reqgion IV

Region 4 is a perfect channel, wavefunction of electron in this region is
of the same form as in the 15t region

W (x,z)=X."1,e""
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The Reflection and Transmission co-efficients in terms of the
various parameters of the dislocation affected channel

R B (~14” +2mEp; )’ Sin’ 2 ugp,)
A" 8mEw’ pgCos® 2uey) +(u” +2mEp;)” Sin® (2ug,)

8mEp, u”

7 =1-|R] =

8mEu’ p, Cos® (2u@,) + (u* + 2mEp; )’ Sin* (2ug, )
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Effects of Periodic Bending on
Channeling



Crystalline Undulator

A spontaneous undulator emission
y
o°.j....°. .0°.“...°.. :’Tu’o.
e . o \ . ° .
— -Q— 7S ’\{\M 0 w 0 o W .
a : F TN LN o d
B ISl NG Y I
P L J VAN N AN
* L4 3 ) ‘-1 1 "__ i
l'. ." . .\' .':
channeling * .0....0' \ ®eeqe®

particles . periodically bent channel

A crystalline Undulator consist of

A channel which is periodically bent
Channeling of ultra relativistic positively charged particles

Channeling takes place if the maximum centrifugal force due to the

bending is less than the maximal force due to the interplanar field.
38



We consider a crystal whose planes are periodically bent following a

perfect harmonic shape
z(z) = a sin(k,z)

The transverse and longitudinal coordinates of a channeled particle
in such a periodically bent crystal

r=x—a Sin(klﬂz)

Where a is the amplitude of bending of the channel and

o
=

l':ll. —

>
S



Region | & IV

The Schrédinger Equation for planar channeling

h? ( 52 52

— + —
O2m \dx2 522

Reqgion Il & 111

Centrifugal force proportional to u?/p,° is responsible for the curved regions
of the channel.

u?=I(l+ 1) with [ as the orbital angular momentum quantum number and p,, is
the radius of curvature of the channel.

40



Assume that a finite number of undulator periods are there in a length of the
dislocation affected region of the channel.

If A, is the wavelength of the dislocation affected region and X is the corresponding
amplitude of the waves

A = n A,

Both these waves can be written in the form re = a sin(nkg?)

ro = xg sin(kyz)
Addition of the waves gives
r=A sin(kgz + ®)

Where A and @ are the effective amplitude and phase of the final wave.

A2 = &+ ;L"(Zl + 2axy cos[(n — 1)kgz — @]
a sin[(n — 1)kgz| + x4 sing

tan & = a cos[(n — 1)kgz] + x4 cos¢ 1.003
1.002
I 1.001
Amplitude is no longer constant but < B A S
varies periodically with respect to the o
depth
0.997

z(hm) — »



hz!la( ()) 1 92

200 \"p ']‘I’”(pfso) +U(p)¥" (p,p) = B T (p, )

2m

With the channel periodically bent, the radius of curvature of the

dislocated affected region, y
0

(P = Py)+ay

Vip)=-

~

po = po — xq sin(kqz) + A sin(k,2)

Larger the value of a, larger T 7.36001 »107

. . ~ . 7.36 x10”
IS the variation of p, with z. 7.36 107 |
. 7.36 10 " |
Po 7.35999 10"

(nm) 0
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Assume a finite number of undulator periods in a length of the dislocation
affected region of the channel (low or medium dislocation concentration). If
Ay is the wavelength of the dislocation affected region and x, is the
corresponding amplitude of the waves

Ay = n A,
The equation of motion of both the waves
ry = a sin(nkyz)
ry = ag sin(kgz)

Superposition of the two waves gives
r=A sin(kqz + <)

Where A and ¢ are the effective amplitude and phase of the final wave.

A? = a®+ 2%+ 2ax4 cos|[(n — 1)kqz — @]

a sin[(n — 1)kgz] + x4 sing
tan ¢

a cos[(n — 1)kyz] + x4 coso

43
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The Schrédinger Equation

P” 19 % 1 o Iy . Iy IFEE

With the channel periodically bent, the radius of curvature of the
dislocated affected region,

po = po — xq sin(kgz) + A sin(k,2)

T 7.36001 107,
7.36 x10” a
100
736 xlO—'; '0
7.36 x10
Po 7.35999 10”7

(nm)
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The variation of parameters of the dislocation affected region with
dislocation density,

Dislocation density 70 Radius of Curvature | 2z (Length of the curved part)
10" /em? 0.5x 10* nm 10.28 x 10° nm 6.28 x 10% nm
10%/em? 1.58 x 10 nm | 10.26 6x 10° nm 9.92 x 10% nm
10%/em? 0.5 x 10° nm 10.28 x 10" nm 6.28 x 10° nm

Range of various parameters of the periodically bent channel affected
with dislocation corresponding to a dislocation density of 7108/cm?,

a Ay R, E T4
(cm) (cm) (cm) (Mev) | amplitude of the dislocation wave
1 x 1077 3.14x 10~ | 2.5 x 1072 | 142.363 2.198 x 1073
10 x 1077 | 3.14x 107" | 2.56x 1077 | 14.236 2.198 x 10~
100 x 1077 | 3.14 x 107* | 2.5x 10" 1.412 2.198 x 10%
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When A <A,

Range of various parameters of the periodically bent channel affected with
dislocation at A =2 A,

Dislocation Ad Ay a R, E
density (cm) (cm) (cm) (cm) (MeV)

1.5x10%/em? | 1.66x 10=* | 3.32x 1071 | 1 x 1077 | 2.8x 1072 150
10 x 1077 | 2.8x 1073 15
100 x 1077 | 2.8x 1074 1.5

Equation of motion,

T =x—a sin(k,vt)

A 2,2 oo (b
T =T+ ak,v" sin(k,vt)

1 .
— = ak? sin(k,vt)

R



2 ge
T +

Uz)— —x=0
my () R !

The maximum amplitude of oscillation

y my?v?

~ ¢eVoR

LTm =

And the equilibrium axis shifts to,

. mry?v?

o =
"7 2¢eVuR

The period of oscillation of the particle in the channel,

my \1/? 24eVy R
T:( ) ) S-z'.-n..-l{l— qd/ORcoq

2qeVy myZv?
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The reflection and transmission coefficients FOR ELECTRONS case

‘R‘Z _ (-u’ +2mEp; )’ Sin® 2ug,)
8mEW’ P, Cos* (2u@,) +(u* +2mEp; )* Sin* (2ug, )

SmEp, u’

2
‘T‘ =8 E 2~2C 2 2 ~2\2 Q;,,2
mEu” p;Cos” Que,)+(u +2mEp; )" Sin” (2ug,)

Dislocations in a periodically bent crystal changes the channeling
and dechanneling coefficients by the parameters of the crystalline
undulator.



For low dislocation density, A&, >4, , the
channelled particle SEES the effects of
dislocations because several undulations of
crystalline undulator are within one period of
dislocation affected channel.

In the opposite case of A&y, < A, (High
dislocation density) the undulator effects are
largely UNEFFECTED by dislocations,
because dislocation affected regions are like
point defects on the scale of undulator

affected regions
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