

BENT CRYSTALS in the LHC

a way to improve the collimation efficiency in modern hadron colliders

Walter Scandale CERN

For the UA9 collaboration

Erice October 29 2008

W. Scandale 1

Outlook

- Why using crystals in hadron colliders
- The H8-RD22 experiment at CERN
 - (test in a single-pass beam-line)
 - Experimental layout
 - Main results
- The UA9 experiment at the CERN-SPS
 - (test in a circular accelerator)
 - ♦ Layout
 - Expected efficiency
- Conclusions

Seam-Core

Two stage collimation in a circular collider

How it works ?

- Short scatterer deflects the primary halo (ap. $r_1 = N_1 \int \beta_{TWISS} \varepsilon$)
- Long collimator intercepts the secondary halo (ap. $r_2=N_2\int \beta_{TWISS} \varepsilon$)
- halo particles captured through amplitude increase via multiple scattering and multi-turn effect.

Requirements for LHC

Nominal beam power: 362 MJ

Super-Conducting Environment

Proton losses into cold aperture

Illustration of LHC dipole in tunnel

Energy [GeV]	Loss rate (10 h lifetime)	Quench limit [p/s/m] (steady losses)	Cleaning requirement	Control transient losses (10 turns to ~1e-9 of
450	8.4e9 p/s	7.0e8 p/s/m	92.6 %	nominal intensity (top)!
7000	8.4e9 p/s	7.6e6 p/s/m	99.91 %	

Capture (clean) lost protons before they reach cold aperture! Required efficiency: - 99.9 % (assuming losses distribute over 50 m)

Courtesy of R. Assmann

RA LHC MAC 13/3/03

Ion collimation: why an issue?

Nominal ion beam in LHC has 100 times less beam power than proton beam, but

W. Scandale 6

Particle-crystal interaction

Possible processes: (a)

- multiple scattering
- channeling
- volume capture
- de-channeling
- volume reflection

W. Scandale 7

The H8RD22 apparatus:

Single pass tests in the SPS-North Area

Strip crystals

Built at INFN - Ferrara in collaboration with IHEP - Protvino

The main curvature due to external forces induces the anticlastic curvature seen by the beam

elastic tensor induces a

curvature of the crystal

face.

planes parallel to the small

Quasimosaic crystals

Built at PNPI - Gatchina

Crystal size: 0.7 × 30 × 30 mm³ W. Scandale 10

Angular beam profile as a function of the crystal orientation

9mm long Si-crystal deflecting 400GeV protons

The **angular profile** is the change of beam direction induced by the crystal

The **rotation angle** is angle of the crystal respect to beam direction

The **particle density** decreases from red to blue

- 1 "amorphous" orientation
- 2 channeling (50 %)
- 3 de-channeling (1 %)
- 4 volume capture (2 %)
- 5 volume reflection (98 %)

W. Scandale 11

Multi-crystals

multiheads crystal (PNPI)

multistrip crystal (IHEP and INFN-Ferrara)

5 heads multi-crystals

Steps to align the five crystals

Volume reflection angle 53 µrad Efficiency ≥ 90 %

High statistics

VV. OCALIUAIC IO

MST 14 - 400 Gev - R=4.61m

Multi-strips

 Volume reflection angle ~100 μrad Efficiency ~ 90 %

IHEP

Other results of H8RD22

PROTON BEAM (400GeV/c),

- Volume reflection dependence from the curvature of the crystal
- Axial channeling

ELECTRON/POSITRON BEAM (180GeV/c),

- Volume reflection with electrons and positrons
- Radiation emission with e+/e- beams in channeling condition

The underground experiment in the SPS

Approved by the CERN Research Board of the 3 Sept 2008

Goals:

- Demonstrate high efficiency collimation assisted by bent crystals (loss localization)
- Follow single particle dynamics in crystalcollimation system

UA9 layout

The SPS beam

- Possible energy range from 70 to 270 GeV.
- We selected two energies of interest:
 - 120 GeV, as for the RD22 experiments (reference data in the literature);
 - 270 GeV, as for other planned experiment in the SPS (faster setting-up)

	High energy	unbunched	bunched
RF Voltage [MV]	1.5	0	1.5
Momentum P [GeV/c]	270	120	120
Tune Qx	26.13	26.13	26.13
Tune Qy	26.18	26.18	26.18
Tune Qs	0.0021	0	0.004
normalized emittance (at 1 σ) [mm mrad]	1.5	1.5	1.5
transverse radius (RMS) [mm]	0.67	1	1
momentum spread (RMS) ∆p/p	2 to 3×10 ⁻⁴	2 to 3×10 ⁻⁴	4×10 ⁻⁴
Longitudinal emittance [eV-s]	0.4	≤0.4	0.4

alternative tunes are those selected in RD22 (Qx=26.62, Qy=26.58).

The SPS beam

- Intensity a few 10¹¹ up to a few 10¹² circulating particles.
- Beam either unbunched or bunched in a few tens of bunches.
- Beam lifetime larger than 80 h, determined by the SPS vacuum.
- A halo flux of a few 10^2 to a few 10^4 particles per turn, which can be investigated with the detectors in the roman pots
 - evenly distributed along the revolution period (unbunched beam);
 - or synchronous to the bunch structure (bunched beam).
- Larger fluxes up to a few 10^5 particles per turn, which should be studied using only the beam loss monitors.

Deflected beam

Probability to hit the TAL

Plans for 2009

UA9

- Installation in the SPS tunnel: Feb 09
- First run: June 09
- Loss localization experiment: Sept 09
- Observation of single particles and efficiency measurement: Nov 09

H8RD22

- 400GeV proton microbeam: Oct 09
- 150GeV electro/positron muon beam: Nov 09

- High efficient reflection (and channeling) observed in single pass interaction of high-energy protons with bent crystals (0.5 to 10 mm long)
- Single reflection on a Si bent crystal deflects > 98 % of the incoming beam by an angle 12÷14 µrad
- Very promising for application in crystal collimation
- Multi-reflections on a sequence of aligned crystals to enhance the reflection angle successfully tested in the 2007 and 2008 runs. Efficiency > 90 %.
- Axial channeling also observed (scattering enhancement ?)

In 2009 the UA9 test planned in the SPS will provide us with the final word on crystal collimation for future hadron colliders

Recent Publications

- 2006-PhysRevLett_97_144801 Volume Reflection of a Proton Beam in a Bent Crystal
- 2007-NIMB54908 Volume reflection of high-energy protons in short bent crystals
- 2007-PRL98 High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal
- 2008-NIMB55427 Efficiency increase of volume reflection of high-energy protons in a bent crystal with increasing curvature
- 2008-PHYSICAL REVIEW SPECIAL TOPICS ACCELERATORS AND BEAMS 11, 063501 (2008)
 Deflection of 400 GeV/c proton beam with bent silicon crystals at the CERN Super Proton Synchrotron
- 2008-PLB 658 Double volume reflection of a proton beam by a sequence of two bent crystals
- 2008-PRL 101, 164801 (2008) High-Efficiency Deflection of High-Energy Protons through Axial Channeling in a Bent Crystal
- 2008-RSI 79 Apparatus to study crystal channeling and volume reflection phenomena at the SPS H8 beamline
- ◆ 2008-SPSC-P-335 PROPOSAL OF THE CRYSTAL EXPERIMENT

Acknowledgments

We acknowledge partial support by

- The European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" program (CARE, contract number RII3-CT-2003-506395),
- the INTAS program
- The MIUR 2006028442 project,
- The Russian Foundation for Basic Research grant 06-02-16912,
- The Council of the President of the Russian Federation grant NSh-3057.2006.2,
- The Program "Physics of Elementary Particles and Fundamental Nuclear Physics" of Russian Academy of Sciences.
- INFN: NTA programme