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Introduction. 
 

    Transition radiation is emitted when a charge particle moves across the 

interface between two different media. The usual way to describe the 

transition radiation is to make use macroscopic electrodynamics. Then 

transition radiation arises as a result of the fast particle self field reflection 

from the interface between two media, when the particle field reduce to the 

electromagnetic plane wave. Macroscopic theory can be applicable when 

this theory applicable for the both of participant field, fast particle self 

field and radiation field. Hence there are two different conditions to 

describing transition radiation with help of macroscopic electrodynamics 

[1]. This fact lead to restriction of the macroscopic electrodynamics 

application to the transient radiation. It is interesting to estimate the 

applicability area of such consideration. 
 
                          2.Macroscopic theory applicability conditions. 
 

    Let us consider the transient radiation as a result of the fast particle self 

field reflection from the interface between two media, when the particle 

field  Fourier component  E0(q)exp(iqr – iqvt) reduce to the 

electromagnetic plane wave   Eexp(ikr -iωt). The conservation of the field 



frequency and of the tangential to the plane of the interface  wave-vektor  

components qt   and  kt  leads to expression to the normal component of  q: 

 
                                             qn = (ω - ktvt)/vn                                                      (1) 
 

The macroscopic theory can be applicable to the radiation field description 

if  k is small in comparison with the inverse interatomic spacing  1/b: 

 
                                                   kb << 1                                             (2) 
 

The macroscopic electrodynamics can be applicable to the particle field 

description when  qn  is small in comparison with the inverse interatomic 

spacing  1/b: 

 
                                     qnb = (ω - ktvt)b/vn << 1                                    (3)  
 

In the case of the normal incidence  (3) has the form 

 
                                               kb << v/c                                                 (4) 
 

and for the  ultrarelativistic particles inequality  (4)  coincide with  (2)  and 

there is only one  condition of  the macroscopic theory applicability – 

inequality  (2)  [2]. 

  When the condition  (2)  is satisfied but condition  (3) is violated the 

macroscopic description of transition radiation can be erroneous and it is 

necessary to make use of microscopic theory. 

Let the interface coincide with plane  x = 0,  and   the particle velocity 

disposed in the plane  y = 0. In that case vx= v sinα,  vy = 0, vz = v cosα,    



kx = k sinϑ cosϕ, ky= k sin ϑ sinϕ, kz = k cosϑ. The inequality  (2)  can be 

written as (λ ≡ c/ω ) 

 
                         1 << (v/c){(λ/b)sin α  + cosα sinϑ cosϕ }                    (5)        
 

In the case of nonrelativistic particle, when v << c,  instead of  (4) we can 

write 

 
                                       1 << (c/v) << (λ/b)sinα,                                 (6) 
 

Then for nonrelativistic particles at the normal incidence the transient 

radiation macroscopic description it is applicable practically only in radio 

wave region. 

  In the case of the fast particle grazing incidence on the interface between 

two media  α  << 1  and if  (λ/b)α >>1  instead of  (5) it is possible to 

write 

 
                               1 << (v/c)(λ/b)α << (v/c)(λ/b)                               (7) 
 

and macroscopic description it is applicable only in radio wave region. 
   
                                   3.Microscopic  approach. 
 

We consider the case, when the inequality  (2)  is satisfied and  (3)  is 

violated. In this case propagation process of  emitted quantum can be 

described with the use of the macroscopic approach, whereas the field 

induced by a fast particle  and the process of quantum emission should be 

treated microscopically. By that reason it is sufficiently to change 

macroscopic expression for polarizing current upon its  microscopic 



expression. The microscopic electron number density  n(r) = n0 + δn(r) 

depend on co-ordinate and  δn(r) << n0 . We can to take into account co-

ordinate dependence of  electron number density as small fluctuations in 

macroscopic consideration. Dielectric constant of such matter can be 

written in form 

 
                 ε(r,ω)=ε0(ω)+δε(r,ω) = ε0(ω) + δn(r) ∂ε0(ω)/∂ n0              (8) 
  

The small value of  δε(r,ω) allow taking into account only linear terms 

δε((r,ω)  in  the Maxwell equations solution. Let us  j0(r,ω)  is the 

polarization current density without fluctuation. In the equation      

 
 rot H(r,ω) = (4π/c)j0(r,ω)− (iω/c)ε0(ω)E(r,ω) − (iω/c)δε(r,ω)E(r,ω)  (9) 
 

we can in the last term of  (9)  to change  E(r,ω) in the last term of   (9) by 

the its first approximation – solution of  (9) in the limit δε(r,ω)→ 0,  

E0(r,ω), which obey to equation 

 
                       rot H0(r,ω) = (4π/c)j0(r,ω)− (iω/c)ε0(ω)E0(r,ω)             (10) 
 

 In such approximation last term in  (9)  is known and play the role of 

external current density 

                           j1(r,ω)= − (iω/4π)δε(r,ω)E0(r,ω)                                 (11) 
                                     

From  (9)  and  (11)  we can write 

 
                 rot H1(r,ω) = (4π/c)j1(r,ω)− (iω/c)ε0(ω)E1(r,ω)                    (12) 
 

At the long distance solutions of equations  (11)  and (13)  has a form 



 
  E0(r,ω) = (4πi/ω)∫d3q exp(iqr){ j0(q,ω)+[q[qj0(q,ω)]]/(q2-(ω/c)2)}  (13) 
 

  E1(r,ω) = (4πi/ω)∫d3q exp(iqr){ j1(q,ω)+[q[qj1(q,ω)]]/(q2-(ω/c)2)}  (14) 

  
It useful to emphasize,  E0  is the macroscopic solution, but  E1 is the 

correction because of the electron density fluctuations . 

 We take into account the electron density fluctuation. But  in the infinite 

fluctuated  media exists the radiation of uniformly moving charge. This 

radiation represent  the incoherent process with summation radiation 

intensity of  each atom. 

The transition radiation is the coherent process.  For the transition 

radiation it is enough to know only value of  the polarization current 

density. 

     For the transition radiation the decisive role play the near-surface 

fluctuation and it is possible to consider only near-surface layer. In this 

case it is possible to limit oneself to take into consideration the electron 

density fluctuations  in this layer.   In the thin surface layer can be 

important the effect of the natural variation of the polarization  due to 

difference between the local field acted on the surface and the  inner 

molecules . Also it is possible the intensified influence of  adsorbed atoms 

and  surface defects.  

 

       4.Transient radiation from the particle system on the surface. 

 

 The intensification of surface region influence make more attractive all 

problems with the surface particles. Let us consider the transition radiation 

from the planar system of particle on the surface. The radiation field from 



one particle determine by local field acted on this particle.  The connection 

between local field  Eloc and the field of external sources   E  0 for the 

particles on plane surface was found in  [3]:                                                                                                                                                                                                        

        
                                   δij - eiej                                  eiej                   
       Ei

loc(r,ω) = {−−−−−−−−−−−   +  −−−−−−−−−−−} Ε0(r,ω)               (15) 
                            1 − π nαl(ω)ξ         1 +  2παt(ω)ξ 
 
where  e  is the normal to the plane z = 0  where the particles are found,  
 
αl(ω)  and αt(ω) are the main values of polarizability tensor  αij(ω)  and 
 
                                           ξ =  ∫ d2q f(q)q                                             (16) 
 
is the coefficient describing the in-plain distribution of particles; function   
 
f(q) is the Fourier transform of distribution function  
 
                     w(Rba) = (1/S)η (Za+Zba)[1 – f(Xba+Yba)]                        (17) 
 
The function η(z)  describes the particle distribution along the direction e   
 
and in this work it can be taken as delta-function   δ(z) and  
 
                                         ξ =  ∫ qd2qf(q)                                               (18) 
 
The local field Fourier transform can be found from (15) with help of fast  
 
particle self field: 
                                                                  ie 
          Ει

loc(qx,qy,Z =0,ω) = ------------------------------------------ ×  
                                              2π2vz[K2- (ω/c)2+ (ω −  Kv)2/vz

2]                                   
                                                                                                               (19) 
                      (δij – eiej)(ωv/c2-K)              eiej[ωv/c2- (ω − Kv)/vz 

              ×{−−−−−−−−−−−−−−−−    +  −−−−−−−−−−−−−−−−−−} 
                        1 − an1πα(ω)                       1 + 2an1 πα(ω) 
 



The transition radiation energy in the frequency range dω    in the element  
 
of solid angle dΩ    (oriented along the unit vector  n) is given by 
 
                      d2W(n,ω)                        4e2n1

2  4 

                     −−−−−−−  = −−−−−−−−−−−−−−−−−−−−−−−−−× 
                       dωdΩ              c3vz

2[K2- (ω/c)2+ (ω - Kv)/vz
2]2                              

                                                                                                                (20) 
                 [n{(v – vze)ω/c2-K}]           [ne]{ω vz/c2- (ω - Kv)/vz} 
           ×|-------------------------   +     --------------------------------- |2 

                     α−1(ω) − πan1                                  α−1(ω)  + 2π an1 
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