Experimental investigation of Smith-Purcell radiation focusing by using the parabolic periodical targets

G.A. Naumenko^a, A.P. Potylitsyn^b, L.G. Sukhikh^b, Yu. Popov^b *a Nuclear Physics Institute at Tomsk Polytechnic University b Tomsk Polytechnic University*

Microtron 12 MeV, NPI, Tomsk, Russia, 2008

Smith-Purcell radiation

Estimations

The classical Kirhoff method was modified to take into account the fact that in

case of TR and SPR one have inhomogeneous Maxwell equations.

Azimuthal angular density distribution $(\theta=90^{\circ}, \lambda=12 \text{ mm})$

periodic target will be useful?

Focusing by parabolic targets The idea of a focusing was suggested also by A. Schagin (RREPS-2007, Prag), but in this

report were presented simple estimations using data from the **far field zone theory**.

Let's consider two schemes of focusing:

Azimuthal radiation density distribution

3.5 times radiation density amplification was observed

Vertical focusing

Scheme of experiment

Azimuthal radiation density distribution

φ

of the radiation density by factor ~3.5 over the one from a flat

target.

