Geometrical effect of target crystal on PXR generation as a coherent X-ray source

Yasushi HAYAKAWA

Laboratory for Electron Beam Research and Application (LEBRA), Nihon University

"Channeling 2008" (Oct. 25 – Nov. 1, 2008, Erice)

LEBRA facility at Nihon University

LEBRA: Laboratory for Electron Beam Research & Application

Tunable light-source facility based on a conventional S-band electron linac

elctron energy: 125MeV(max.), 100MeV(typ.) average current : $5\mu A$ (max.), 1 – 2 μA (typ.)

Beamlines of FEL & PXR

Free electron laser (FEL): $1\mu m - 6\mu m$ (near-IR) Parametric X-ray radiation (PXR): 5keV - 20keV

Status of LEBRA-PXR

- * Electron beam energy: 100MeV
- * Macro pulse: ~100mA, 5 10μs, 2 5Hz
- * Average current: $1 5\mu A$
- * Taget crystal: Si(111) plane
- * PXR energy: 5 20keV
- * Irradiation field: 10cm in diameter @ exit port
- * Total flux: $> 10^6 10^7$ photon/s
- * Application: Dispersive XAFS (DXAFS) Diffraction enhanced imaging (DEI)

Typical result of DEI (symm.target)

Measurement for spatial coherence

Edge effect of the target crystal

LEBRA

Asymmetric cut target (arrgt.1)

In this arrangement,

- * electron path < X-ray path on the asymmetric surface
 - -> Intensity of PXR from front surface is much reduced
- * Front and rear surfaces are invisible from 2θ direction at 17.5keV. (Bragg angle = 6.5 deg.)

Rocking curve of 2nd crystal (arrgt.1)

symmetric surface > asymmetric surface

LEBRA

* 2nd crystal angles are slightly different.

Results in arrgt.1 (Imaging)

Horizontal image doublet is substantially suppressed and the edge is well defined at 17.5keV. (edge irradiation)

IP: 30min

e-beam size (H1.5 x V1.5mm)

Propagation distance: 220cm

Energy resolution of DXAFS measurement

DXAFS resolution depends on the horizontal source size. Resolution of spectra ~ 3eV, corresponding to 0.6mm

PXR

Asymmetric cut target (arrgt.2)

Front surface: asymmetric cut

Rear knife-edge surface: symmetric Bragg case

In this arrangement,

- X-ray path < electron path on the asymmetric surface
 -> Absorption of PXR is reduced
- * Only front asymmetric surface is visible from 2θ direction

Absorption imaging in arrgt.2

IC card@14keV e-beam: 100mA, 5μs, 5Hz (2.5μA) exposure: 30s (macro-pulse duty: 0.75ms)

In this arrangement,

- PXR intensity rather improves, even if the e-beam is wider than the surface of the target crystal.
- Imaging with shorter exposure is possible.
 (Flux > 10⁷ /s)

Absorption imaging in arrgt.2

PXR: 16keV

Edge effect of the target crystal

same e-beam size (H1.0 x V2.5mm) Propagation distance: 220cm

The doublet of the image due to the edge effect is enhanced.

Two coherent X-ray beams maybe exist.

Edge effect of the target crystal

Diffraction enhanced imaging (DEI) in arrgt.2

In this arrangement,

- * DEI is also possible
- * relatively short exposure time
- * phase accuracy may be worse (possibly)

Summary

- Mainly the knife-edge surface in a symmetric Bragg case contributes PXR emission.
- * The edge effect disappears.
- * The spatial coherence and the spectral resolution tend to improve.
- The intensity becomes rather weak.
 The contribution from the deep volume in the target seems to be little.

Summary

* The intensity rather improves and imaging with shorter exposure is possible.

- * The edge effect seems to be enhanced.
- DEI is possible.
 It indicates that the use of asymmetric cut surface dose not destroy the coherence of PXR.

Acknowledgments

 The "Academic Frontier" Project for Private University: matching fund subsidy from MEXT, 2000-2004 & 2005-2007

Thank you for your kind attention !!

Appendix

Results in arrgt.1 (Imaging)

Horizontal image doublet was strongly suppressed and the edge was well defined at 17.5keV. (edge irradiation)

e-beam size (H1.5 x V0.7mm)

Diffraction enhanced imaging (DEI) in arrgt.1

Longer exposure time is necessary.

Absorption imaging

laser pointer@16.0keV average current: 2.2 μ A exposure: 10s (IP) calculator@16.0keV average current: 1.2μ A exposure: 30s (IP)

Absorption imaging

laser pointer@16.0keV average current: 2.5μ A exposure: 180s (IP)

Edge effect of the target crystal

Simultaneous imaging by 2color beams

Cu can be detected!

EXAFS analysis using PXR-DXAFS

