CRYM: a channeling emulation program based on the latest experimental data

Said Hasan Università degli studi dell'Insubria INFN Milano Bicocca

Channeling 2008 Erice

CRYM stands for Crystal Model

- What it means
- What it is for (pros & cons)
- How it works:

Crystal > effects

Angular acceptance and efficiency Angular deflection

A qualitative comparison with data published by the H8RD22 coll.

What's CRYM?

It is not a Crystal Channeling simulation

It is an emulator!

It tries to reproduce:

The behavior of short bent crystals in planar condition with heavy high energy particles (hundreds of GeV)

An approach *complementary* to the standard one to:

foresee and interpret the crystal channeling experiments

Design and Analysis

- Unknown (not-measured) effects cannot be included
- Possible uncertainties in the emulation of unexplored physical region

It's fast

- Easy integration with accelerator and detector simulations: The model reflects our way of thinking
- Possibility of inserting fine (but maybe important) crystal features (eg. torsion or small spatial misalignment)
- It is an attempt to collect all the planar channeling information into coherent model

How does it work?

How does it work?

The crystal is described through its effects

Each effect is described mainly by:

Angular acceptance + efficiency

6

• The angular deflection

Reflection region

Reflection region

W. Scandale et al., "Volume reflection dependence of 400 GeV/c protons on the bent crystal curvature", Phys. Rev. Lett.

"effects" produce deflection

Amorphous orientation and amorphous layer

Gaussian distribution with σ :

$$\theta_m = \frac{13.6 \text{ MeV}}{\beta cp} z_p \sqrt{x/X_0} (1 + 0.038(x_c/X_0))$$

Beam divergence: 7µrad Design: strip Dimension (h × w × l): (7cm × 1mm × 3mm)

"effects" produce deflection

Channeling and dechanneling

Channeled particles lose less energy, ~60% of the amorphous one

The dechanneling events are exponentially distributed

W. Scandale et al., "Volume reflection dependence of 400 GeV/c protons on the bent crystal curvature", Phys. Rev. Lett.

Let's put together the pieces:

First experimental observation of VR at 400GeV (CERN SPS 2006)

◆ SCANDALE W. et al., Phys. Rev. Lett., **98** (2007) 154801.

Multi-crystals emulation is easy

First experimental observation of multi-**VR (CERN SPS 2006)**

W. Scandale et al., "Double volume reflection of a proton beam by a sequence of two bent crystals", Phys. Lett. B, Volume 658, Issue 4, Pages 109-111, 2008

Emulated by CRYM

Multi-crystals emulation is easy

75

50

25

0

-25

-50

-75

-100

-125

-150

crystal deflection angle (µrad) 75 50 25 0 -25 -50 -75 -100 20 -150 -100 -80 -20 20 -60 -40 0 gonio angle (µrad)

Emulated by CRYM

Behavior of the second

Multi-crystals emulation is easy

Behavior of the second

Without torsion

With torsion

Energy scaling

Hypothetic crystal:

Design: strip (110) Dimension (h x w x l): (7cm x 0.5cm x 1mm) Bending raius: 4m Torsion: 0 urad/mm

Energy scaling Hypothetic crystal: Design: strip (110) Dimension (h x w x l): (7cm x 0.5cm x 1mm) Bending raius: 4m Torsion: 0 urad/mm angle (jurad) 220 220 Deflection angle (urad) 00 00 00 00 00 00 **400 120GeV R-dependence** critical angle 5.1 7 7 7 **่**150 100 50 unit of unit 0 -50 20 0.9 200 250 -50 150 150 300 50 100 າບ Crystal mi Crystal misalignment (µrad) 0.8 0.7 120 400 GeV GeV 0.6 23 0.5 10 20 40 50 unit of critical radius 30

Conclusions

- A computer model for the planar channeling phenomena has been developed
- The program is designed for the simulation and the analysis of the "accelerator" experiment multi-crystals torsion small misalignment

NEXT:

- Many details could be added: axial effects and radiation ones
- CRYM is going to be used to simulate the CRYSTAL experiment at CERN

Said.Hasan@uninsubria.it

Università degli studi dell'Insubria INFN Milano Bicocca

Thank you for your attention!

Said.Hasan@uninsubria.it

Università degli studi dell'Insubria INFN Milano Bicocca

Channeling 2008 Erice

Channeling and dechanneling angular acceptance (and efficiency)

The agreement with the theoretical function which describe the channeling acceptance (harmonic potential) approximation is good

$$C_{eff} = C_{eff}^{max} \sqrt{1 - \left(\frac{\theta_c}{\theta_{in}}\right)^2}$$

the following scaling law with the bending radius is assumed for CRYM

$$C_{eff}^{max}(R) = C_{eff}^{max}(\infty) \left(1 - \frac{R}{R_c}\right)$$

Critical angle at 400GeV for a bending radius of 4.47m

Relative ratio of the two distributions:

It has a parabolic trend as a function of the incoming angle (experimental observation)

The parameters of this function are used in CRYM to compute the dechanneling length as a function of the relative angle between the particle and the crystal

