

Selective amplification of x-rays in the energy range 50-65 keV

J.E. Fernández, ^{1,2} V. Scot, ¹ D. Sivieri,³ and A. Guidetti ³

(1) Laboratory of Montecuccolino (DIENCA)Alma Mater Studiorum University of Bologna, Italy(2) Istituto Nazionale di Fisica Nucleare (INFN)

(3) IMAL srl, Modena, Italy

OUTLOOK

- Experimental results
- Theoretical Model
 - Description of Polarization
 - Scalar and Vector Models
 - The Codes
- Interpretation of Experimental Data

EXPERIMENTAL RESULTS

Direct Measurement of X-Ray Spectra

X-Ray Tube COMET CXR105 Set-up #1 Cylindrical Collimator

X-ray beam

Steel cylindrical needle collimator

Amptek CdTe SSD

50 kV

55 kV

60 kV

Variation with KV

Comparison between needle and trap collimators

Direct Measurement of X-Ray Spectra

X-Ray Tube COMET CXR105 Set-up #2 Plate Collimator

X-ray beam

Steel flat collimator

Amptek CdTe SSD

Variation with KV

THEORETICAL MODEL

MULTIPLE SCATTERING

- X-rays penetrate deeply into the matter, and, in a thick medium, give place to a phenomenon known as multiple scattering (i.e, multiple collisions).
- Multiple scattering models describe the influence of the prevailing interactions in the x-ray regime (photoelectric effect, Compton scattering and Rayleigh scattering)

Photoelectric effect as 'scattering'

PREVAILING INTERACTIONS IN THE X-RAY REGIME

DESCRIPTION OF POLARIZATION

WHY POLARIZATION?

By considering polarization we improve the model of photon diffusion

Without polarization photons are considered only as a particles

Polarization state definition

REPRESENTATION OF POLARIZED RADIATION

Stokes parameters I,Q,U,V (having the dimension of an intensity) can specify the physical magnitudes:

- Intensity of the beam
- Degree of polarization
- Orientation of the ellipse of polarization
- Ellipticity

Modification of the polarization state due to a collision (Stokes representation)

TWO RELEVANT ASPECTS

- A collision always changes the polarization state
- The angular distribution for scattered unpolarized and polarized photons is different

PHOTON DIFFUSION IS DESCRIBED BY A "VECTOR" TRANSPORT EQUATION (THE 3-D EQUATION IS SHOWN HERE)

$$\vec{\omega} \cdot \nabla \vec{f}^{(S)}(\vec{r}, \vec{\omega}, \lambda) = -\mu(\vec{r}, \lambda) \vec{f}^{(S)}(\vec{r}, \vec{\omega}, \lambda) + \int_{0}^{\infty} d\lambda' \int_{4\pi} d\omega' H^{(S)}(\vec{r}, \vec{\omega}, \lambda, \vec{\omega}', \lambda') \vec{f}^{(S)}(\vec{r}, \vec{\omega}', \lambda') + \vec{S}^{(S)}(\vec{r}, \vec{\omega}, \lambda)$$

where

$$\vec{f} = \begin{bmatrix} I(\vec{r}, \vec{\omega}, \lambda) \\ Q(\vec{r}, \vec{\omega}, \lambda) \\ U(\vec{r}, \vec{\omega}, \lambda) \\ V(\vec{r}, \vec{\omega}, \lambda) \end{bmatrix}$$

VECTOR TRANSPORT EQUATION (CONT.)

where

$$H^{(S)}(\vec{r},\vec{\omega},\lambda,\vec{\omega}',\lambda') = L^{(S)}(\pi-\psi) K^{(S)}(\vec{r},\vec{\omega},\lambda,\vec{\omega}',\lambda') L^{(S)}(-\psi')$$

$H^{(S)}$ = kernel matrix in the meridian plane of reference

 $K^{(S)}$ = scattering matrix in the scattering plane of reference

IMPORTANT PROPERTIES OF THE "VECTOR" TRANSPORT EQUATION

- Describes the evolution of the full polarization state (not only the intensity of the beam)
- Is linear (for the Stokes representation)
- Requires the simultaneous solution of the whole set of transport equations
- Cannot be transformed in a scalar equation !! (due to the coupling in the scattering term)

SCALAR and VECTOR MODELS

MODELS

Different degrees of approximation to describe the diffusion photons:

- scalar model: photons never modify an average polarization state
- vector model: transport of photons starting with arbitrary polarization state

Scalar transport equation

Vector transport equation

THE CODES

SOLUTION TECHNIQUES

The transport equation is solved using an order-of-collisions scheme

comparable results for deterministic and Monte Carlo solutions

Deterministic vs. Monte Carlo

Solution	Deterministic	Monte Carlo (statistical)
Scope of the solution	Global	Local
Accuracy		
Capability to describe the geometry		
Number of collisions		
Developed codes	SHAPE	MCSHAPE

CHARACTERISTICS OF THE CODE MCSHAPE

- Arbitrary polarization state of the source
- Multi-layer multi-component
 homogeneous targets
- Monochromatic or polychromatic source
- Doppler broadening (for Compton scattering)
- Full description of the polarization state
- N-collisions

WEB SITE http://shape.ing.unibo.it

			_	· · ·	
Features	Details	SHAPE v2.20	MCSHAPE v2.62		
	photoelectric effect	\boxtimes	X		
	~1000 characteristic lines	\boxtimes	X		
	line width	\boxtimes	\boxtimes		
	atomic Rayleigh scattering	X	X		
	atomic Compton scattering	X	X		
	Compton profile	first collision only	X		
	electron bremsstrahlung	foreseen in v3	foreseen in v3		
	open data bases	X	X		
	user defined elements		foreseen in v3		
	infinite thickness targets	X	X		
Physics	finite thickness targets		X		
	multilayer targets		X		
	polarization representation	Stokes	Stokes		
	source polarization state	linear/ unpolarised	arbitrary		
	calculated spectrum	intensity component only	full polarization state		
	monochromatic source	X	X		
	polychromatic source	postprocessor	X		
	external detector	solid state Si/Ge	X		
	reflection geometry	X	X		
	transmission geometry		X		

CODES COMPARISON (part 1: Physics)

CODES COMPARISON (part 2: model and programming)

Features	Details	SHAPE v2.20	MCSHAPE v2.62	
Miscellaneous	selective computation of single interaction chains	X	partial	
	particle	photons	photons	
	scalar equation	X	\boxtimes	
	vector equation	X	\boxtimes	
Transport model	solution	deterministic	Monte Carlo	
	collisions	3	100	
	1-D spatial geometry	X	\boxtimes	
	3-D spatial geometry		using MCSHAPE3D	
Code	language	DELPHI	FORTRAN 90	
	additional libraries	graphics	WINTERACTER	
	platform	WINDOWS	WINDOWS / LINUX	
	distribution	web site	web site	
	parallelization		MPICH v1.0 (only Linux)	
Applications	spectroscopy	X	\boxtimes	
	analytical chemistry	X	\boxtimes	
	radiation metrology	X	\boxtimes	
	x-ray optics		with MCSHAPE3D	
	dosimetry		with MCSHAPE3D	
	radiation transport teaching	X	\boxtimes	

NEW!! 3D version of MCSHAPE

INTERPRETATION OF EXPERIMENTAL DATA

SIMULATIONS WITH MCSHAPE 1-D

The simulation was performed using the following parameters: (1) Pure iron flat collimator (2) Incidence and take-off angles in agreement with a scattering angle of:

 $\theta \approx tg\theta = \frac{\frac{1}{2}\text{ collimator diameter}}{\text{distance collimator - tube}} = \frac{\frac{1}{2}(1mm)}{(2000mm)} \approx 2.5 \, 10^{-4} \, rad$

(3) Polychromatic excitation from 2 to 65 keV

SIMULATION WITH MCSHAPE 1-D

Atomic Rayleigh scattering always prevails in forward scattering

Atomic Compton scattering is negligible in forward scattering

In addition, Rayleigh scattering prevails (or is equivalent) to Compton in the energy range considered

CONCLUSIONS

CONCLUSIONS (1/2)

- Needle collimators can be used to remarkably enhance the intensity of the x-ray beam in the high energy side of x-ray spectra
- At 65 kV operation, the enhancement of the spectrum is equivalent to the whole incident spectrum and is concentrated on the high energy side.
- Plate collimators produce a similar but weaker effect.
- The effect has been tested in the range 50-65 keV

CONCLUSIONS (2/2)

- The MCSHAPE 1-D code was used to interpret the physical reasons of this effect.
- The enhancement can be explained as due to multiple scattering, in particular, atomic Rayleigh scattering in the forward direction (small angle scattering).
- The measured enhancement exceeds the theoretical prediction of the 1-D code but is consistent with a 3-D estimation.

Thank you for your attention!