

Laser-plasma based electron accelerator

Jérôme Faure Laboratoire d'Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France jerome.faure@ensta.fr

We acknowledge the support of the European Community, under the FP6 "Structuring the European research area" programme (project CARE, contract number RII3-CT-2003-506395 and project Euroleap, contract 028541)

Collaborators

Experiment:

- C. Rechatin, Y. Glinec, A. Norlin, J. Lim, V. Malka (LOA, Palaiseau, France)
- A. Ben Ismail, A. Specka, H. Videau (LLR, Palaiseau, France)

Simulations / theory

- A. Lifschitz (LPGP, Orsay, France)
- E. Lefebvre, X. Davoine (CEA-DAM, France)
- A. Pukhov (Univ. Dusseldorf, Germany)
- L. Silva & J. Vieira, R. Fonseca (GoIP, Lisbon, Portugal)

Main motivation: compactness

RF cavity: 1 m

Plasma wave: 100 µm

E_z = 10-100 MV/m Physical limit: breakdown

E_z = 10-100 GV/m Physical limit: wavebreaking

+ bunch length = a fraction of the wavelength of accelerating field
→ ultrashort electron bunches (10 fs)

Why plasmas ?

A plasma: free electrons and ions: already ionized

$$E_z \propto \sqrt{n_e} \approx 300 \ GV/m$$
 (for electron density $n_e = 10^{19} \text{ cm}^{-3}$)

 E_z is 10⁴ greater than in a radio-frequency cavity \rightarrow compact accelerators possible

WAKEFIELDS

Laser driver: an ultra-intense and ultra-short laser pulse

Witness beam Driver beam

Laser driver: ponderomotive force **ME-field** F l_{laser} F electron **E-field** Ponderomotive force: pushes electrons outward at high laser ٠ intensities ($I > 10^{18} \text{ W/cm}^2$) $F_p \sim -d I_{laser}$ λ_{p} Laser pulse $\delta n/n$ v_g≈c Plasma wave 1D picture $V_p \approx V_g \approx c$

- Wakefield excitation is effective at resonance: $\tau_0 c \sim \lambda_p$
- → Short pulses are required (τ_0 < 100 fs)

« weak laser intensity »: linear regime

Electron density

a=0.5

3D nonlinear wakefields

Electron density

Different electric fields 100 % energy spread

Monoenergetic acceleration

Challenge for RF technology: requires L_{bunch} < 100 fs

 \rightarrow Need to find ways to inject sub-100 fs electron bunches

 \rightarrow Electron bunches accelerated in plasma waves are ultrashort (< 10 fs)

Self-injection in the nonlinear (bubble*) regime

Experiments

Scale: 100 MeV in 1 mm

Schematic

Picture of experiment

Other quasi-monoenergetic results

• Berkeley experiment: Used plasma channel for guiding $n_e=2\times10^{19}$ cm⁻³ ct ~ 2.2× λ_p 85 MeV

• Imperial college \ RAL Long Rayleigh length $n_e=2\times10^{19}$ cm⁻³ $c\tau \sim 2\times\lambda_p$ 75 MeV

> Demonstrated by ~30 group around the world

electron energy [MeV]

The path to higher energy

- Scale: 1 GeV in cm scale
- Berkeley experiment using plasma waveguide (Leemans et al., Nat. Phys. 2006)

Also GeV class beams at RAL (England), using a 500 TW laser

Physical picture of beam production

PIC simulation

Scenario:

nonlinear evolution of laser (self-focusing + pulse shortening)

- \rightarrow Self-guiding of laser pulse
- \rightarrow Increases laser intensity
- \rightarrow Cause wave-breaking and electron injection

Drawbacks:

- Very nonlinear phenomena
- Injection is not controlled and depends on laser pulse evolution

We want to develop a more controlled method Control is important for higher beam quality

Control and stability: external injection using another laser pulse

D. Umstadter et al, PRL 76, 2073 (1996); E. Esarey et al, PRL 79, 2682 (1997); Fubiani PRE 70, 016402 (2004)

Experimental setup

Faure et al. Nature 2006

Stable monoenergetic beams at 200 MeV

Statistics over 30 shots E = 206 +/- 11 MeV (5 %) Qpk = 13+/- 4 pC (30 %) dE = 14 +/- 3 MeV (20 %)

Very little electrons at low energy !! dE/E=5% close to spectrometer resolution Controlling the bunch energy by controlling the acceleration length

By changing delay between pulses:

- Change collision point
- Change effective acceleration length
- Tune bunch energy

Tunable monoenergetic bunches

pump injection

Tuning the charge and the energy spread

- Charge can be tuned by controlling the injection volume:
 - → Changing intensity of injection beam: smaller I_{inj} means less heating and smaller injection volume

In pratice, energy spread and charge are correlated: $\Delta V = \Delta p \Delta x$, conservation of ΔV +smaller injection volume also implies smaller Δp Tuning the beam with injection beam intensity

Collaboration with LLR* for resolving small energy spread beams

Spectrometer was designed and built by Laboratoire Leprince Ringuet (LLR)

* A. Specka, H. Videau, A. Ben Ismail

Resolution < 1 % expected

Focusing spectrometer

1% energy spread beams

Conclusion

SUMMARY

- Quasi-monoenergetic beams produced at 100's MeV level
- Stability is improving (5 % rms in energy)
- Controlled injection provides
 - tunable energy: 20-300 MeV
 - tunable charge (in the 10's of pC range)
 - tunable energy spread (down to 1%)
- Simulations reproduce results
 - indicate < 10 fs electron bunches

PERSPECTIVES

- CONTINUE TO INVESTIGATE THIS TECHNIQUE:
 - Push energy limit: use wave guide to increase propagation distances. Goal: stable and tunable GeV class beams
- DIAGNOSE THESE BEAMS
 - Measure emittance
 - Measure bunch length
- USE THESE BEAMS (applications, science ...)

Potential impact of laser-plasma accelerators

Compact XFEL: towards a bright X ray source

Advantage of laser-plasma accelerators:

- Short bunches \rightarrow high peak current
- Seeding with perfectly synchronized harmonics of the laser

Challenges:

- Decrease energy spread (< 1% required for amplification)
- Increase charge

<u>Applications:</u> study of complex structures (X-ray diffraction, EXAFS) But fs time scale