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Main motivation: compactness 

RF cavity: 1 m Plasma wave: 100 µm 

Ez = 10-100 MV/m 
Physical limit: breakdown 

Ez = 10-100 GV/m 
Physical limit: wavebreaking 

+ bunch length = a fraction of the wavelength of accelerating field 
 ultrashort electron bunches (10 fs)  



Why plasmas ? 
A plasma: free electrons and ions: already ionized 

(for electron density ne=1019 cm-3) 
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EZ is 104 greater than in a radio-frequency cavity  
 compact accelerators possible 

vp ≈ c 
Plasma wave 



WAKEFIELDS 

•  Laser driver: an ultra-intense and ultra-short laser pulse 

Driver beam Witness beam 

Tajima & Dawson, PRL (1979) 



Laser driver: ponderomotive force 

•  Ponderomotive force: pushes electrons outward at high laser 
intensities (I > 1018 W/cm2)                       Fp ~ -d Ilaser 
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•  Wakefield excitation is effective at resonance: τ0c ~ λp 

 Short pulses are required (τ0 < 100 fs) 

E-field


Laser pulse 
vg ≈ c 

I  δn/n


vp ≈ vg ≈ c 
Plasma wave 1D picture 

λp 



Accelerating and focusing fields 

a=0.5 

Electron density 
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« weak laser intensity »: linear regime 
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3D nonlinear wakefields 

Focusing 
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a0=2 
Electron density 

Pulse 

λp=10-30 µm  
(depending on plasma electron density ne) 



Injecting electrons in plasma wakefields 

z-ct 
δne 

z-ct 
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Lbunch > λp Lbunch < λp 

Different phases 
Different electric fields 
100 % energy spread 

Electrons « in phase » 
Monoenergetic acceleration 

Challenge for RF technology: requires Lbunch < 100 fs 

 Need to find ways to inject sub-100 fs electron bunches 

  Electron bunches accelerated in plasma waves are ultrashort (< 10 fs) 



Self-injection in the nonlinear (bubble*) regime 

cτ ≤ λp and w0 ≤ λp  
a > 3 

*Pukhov & Meyer-ter-Vehn, Appl. Phys. B 2002 

Laser pulse 

Plasma  « bubble » 
Injection of electrons 

Time  evolution of  
electron spectrum 
from PIC simulations monoenergetic 

electron beam 
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5-pass Amp. :  
200 mJ  

8-pass pre-Amp. : 2 mJ 

Oscillator : 2 nJ, 15 fs 

Stretcher : 500 pJ, 400 ps 

 Après Compression : 
2 J, 30 fs, 0.8 µm,  

10 Hz, 10 -7 2 m 

Nd:YAG : 10 J 

4-pass, Cryo. cooled Amp. : 
< 3.5 J, 400 ps 

Laser “Salle Jaune” 



compressor 

Vacuum  
chamber 



Experiments 

Gas jet 

laser 

electrons 

Schematic 
Picture of experiment 

Scale: 100 MeV in 1 mm 
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Laser axis 

First quasi-monoenergetic beams 

J. Faure et al., Nature (2004) 

PIC 

Experiment 



•  Berkeley experiment: 
Used plasma channel for guiding 
ne=2×1019 cm-3 
cτ ~ 2.2×λp 
85 MeV 

•  Imperial college \ RAL 
Long Rayleigh length 
ne=2×1019 cm-3  
cτ ~ 2×λp 
75 MeV 

Charge~100 pC 

Other quasi-monoenergetic results 

Demonstrated by ~30 groups  
around the world 



The path to higher energy 

•  Scale: 1 GeV in cm scale 
•  Berkeley experiment using plasma waveguide (Leemans et al., Nat. 

Phys. 2006) 

•  Charge: ten’s of pC 
•  δE/E=5 % 
  (instrument limited) 

laser e-beam 

Also GeV class beams at RAL (England), using a 500 TW laser 



Physical picture of beam production 
PIC simulation 
2 mm propagation 

Scenario: 
nonlinear evolution of laser (self-focusing + 
pulse shortening)  

  Self-guiding of laser pulse 
  Increases laser intensity 
  Cause wave-breaking and electron injection 

Drawbacks: 
- Very nonlinear phenomena 
- Injection is not controlled and depends on laser 
  pulse evolution 

We want to develop a more controlled method 
Control is important for higher beam quality 



Control and stability: external injection  
using another laser pulse 

D. Umstadter et al, PRL 76, 2073 (1996); E. Esarey et al, PRL 79, 2682 (1997); Fubiani PRE 70, 016402 (2004) 

Counter-propagating geometry: 
pump injection 

Ponderomotive force of beatwave: Fp ~ 2a0a1/λ0       (a0 et a1 can be “weak”)y 
Boost electrons locally and injects them: y 
INJECTION IS LOCAL IN FIRST BUCKET y 
no need of self-focusing, no self-trapping  

Plasma wave 

Principle: Pump beam 

Injection beam 

electrons 



Experimental setup 
Injection beam 
130 mJ, 30 fs  
φfwhm=28× 23 µm 
 I ~ 4×1017 W/cm2 

Pump beam 
670 mJ, 30 fs,  
φfwhm=21×18 µm 
I ~ 4×1018 W/cm2 



From self-injection to external injection 

ne=1.25×1019 cm-3 

ne=1019 cm-3 

ne=7.5×1018 cm-3 

pump 

Single beam 

pump injection 

2 beams 

Self-injection  
Threshold 

ne=7.5×1018 cm-3 

Faure et al. Nature 2006 



Statistics over 30 shots 
E = 206 +/- 11 MeV (5 %) 
Qpk = 13+/- 4 pC (30 %) 
dE = 14 +/- 3 MeV (20 %) 

Very little electrons at low energy !! 
dE/E=5% close to spectrometer resolution 

Stable monoenergetic beams at 200 MeV 
3 mm gas jet 



Controlling the bunch energy 
by controlling the acceleration length 

By changing delay between pulses:  
•  Change collision point 
•  Change effective acceleration length 
•  Tune bunch energy 

Pump beam Injection beam 

Gas jet 

2 mm 



Tunable monoenergetic bunches 

pump injection 

late injection 

pump injection 

early injection 
pump injection 

middle injection 



•  Charge can be tuned by controlling the injection volume: 
 Changing intensity of injection beam: smaller Iinj means 

less   heating and smaller injection volume 

Tuning the charge and the energy spread 

In pratice, energy spread and charge are correlated: 
ΔV=ΔpΔx, conservation of ΔV +smaller injection volume  
also implies smaller Δp 



Tuning the beam with injection beam intensity 

Energy @ 80 MeV 
stays similar 

Charge from 60 to 5 pC 

ΔE from 20 to 5 MeV  
(close to resolution) 



transport / focusing dispersion / imaging 

LANEX screens 
Permanent 

dipole 

quadripoles 

Gas jet 

Resolution < 1 % expected 

Spectrometer was designed and built by Laboratoire Leprince Ringuet (LLR) 

Collaboration with LLR* for resolving  
small energy spread beams 

* A. Specka, H. Videau, A. Ben Ismail  



Focusing spectrometer 



1% energy spread beams 



Conclusion 

SUMMARY G 
•  Quasi-monoenergetic beams produced at 100’s MeV level 
•  Stability is improving (5 % rms in energy) 
•  Controlled injection provides 

•  tunable energy: 20-300 MeV 
•  tunable charge (in the 10’s of pC range) 
•  tunable energy spread (down to 1%) 

•  Simulations reproduce results 
•  indicate < 10 fs electron bunches 

PERSPECTIVES Q 
•  CONTINUE TO INVESTIGATE THIS TECHNIQUE: 

•  Push energy limit: use wave guide to increase propagation 
  distances. Goal: stable and tunable GeV class beams 

•  DIAGNOSE THESE BEAMS 
•  Measure emittance 
•  Measure bunch length 

•  USE THESE BEAMS (applications, science …) 



X-rays:diffraction 
γ-rays:radiography  

Medicine 
Radiotherapy 

Accelerator Physics 

Injector 

Chemistry & 
Radiobiology 

Irradiation by short  
bunches 

Electrons  
generated by 
Laser-Plasma 
Interactions 

Potential impact of laser-plasma accelerators 

Moderate energy: 10 MeV-1GeV 
Compact 

Sub-50 fs bunch duration 



Compact XFEL: towards a bright X ray source 

Applications:  study of complex structures  
(X-ray diffraction, EXAFS) But fs time scale 

θ ~ µrad 

10cm 

Advantage of laser-plasma accelerators: 
•  Short bunches  high peak current 
•  Seeding with perfectly synchronized harmonics of the laser 

Challenges: 
•  Decrease energy spread (< 1% required for amplification) 
•  Increase charge 


