Channeling 2008, Erice, Oct.25-Nov1, 2008

Possible use of Small Accelerators in Student Laboratory for Engineering Education

I.Endo, M.Tanaka, and T.Yoshimura

Kure National College of Technology

Motivations

- Any type of school should take account of ESD.
- Nuclear power engineers are becoming old without enough number of successors.
- Insufficient education of radiation basics for everybody.
- Jobs of some portion of graduates of National College of Technology are somehow related to construction and maintenance of nuclear-power plants.

Feasibility Study of

"Possible Radiation-related Education in National College of Technology in Harmony with Existing Engineering-Education Program.

Partly supported by the Japanese governmental grant for *"Education Project for Nuclear Power Related Human Resources"*

Kure National College of Technology

- Five Year (Associate Degree) Programs:
 - Mechanical Engineering
 - Electric Engineering and Information Science
 - Civil and Environmental Engineering
 - Architecture
- Additional Two Year Advanced (Bachelor) Programs:
 - Mechanical and Electric Engineering
 - Construction Engineering

Education System is based on practical experiences + Lectures + Researches

Inter College Robot Contest

Attractive features of accelerator in college engineering education

- By combining the acquired knowledge and practical skills, students may design and construct a simple accelerator.-→
 Good theme for Problem Based Learning and enhancement of collaboration among students with different interest.
- It can be a radiation source safely stored when switched off.---→ Student Lab. of Radiation basics
- Low intensity but pulsed radiation from an accelerators might enable new experiments that were difficult with low intensity RI.

Suitable type of accelerator

- Small
- Low cost
- Simple but Interesting principle
- Easy to produce a prototype
- Easy to handle
- \rightarrow Low energy and low intensity betatron

Existing Small Betatron Ex1: 1MeV Betatron by High Beam Technology Ltd. (in collab. with Introscopy Institute, Tomsk and Hiroshima University)

<<Features>>

- •Small (Dimensions: 250×395×570mm)
- •Light ! (Total weight: 50kg)

•No severe legal regulation!(Max Energy— 950keV)

- •Easy to operate !
- / Main body containes all what you need except a controller for remote handling.

Air cooled.

Conventional mains supply at home and office is enough.

info@hi-beam.co.jp

※H14H15ひろしま産振構ヤングベンチャーチャレンジ事業補助金により製作

Example of test exposure with Hamamatsu Image Intensified Xray Camera (C7336)

• Exposure time : 1min

Existing Small Betatron Ex2: Press Release by Mitsubishi Electric Ltd. Oct.28, 2008

990KeV betatron 5A , 1kHz http://www.mitsubishielectric.co.jp/corporate/ randd/inquiry/index_at.html

Cyclotron Conference (2004)

Educational Features related to Betatron partly included and yet to be included in the standard college curriculum

- Basic principle of betatron
 - Lorentz force, Induction acceleration, Orbit stability, Introductory relativistic mechanics
- Electron gun
 - Electron source ,High voltage generator, Focusing electrodes
- Vacuum system
 - Pumping, Vacuum gauge

• AC magnet

- Magnetic material, Shape designing and machining, Magnetic field measurement, Pulsed current supply
- Electron beam control and monitoring
- Radiation target
- Radiation safety
- Radiation detection
- Applications of radiation

Program1 Design and prototyping of a betatron : Problem- based Learning

- Total design
- Magnet design
- Power Electronics design
- Vacuum and Electron gun design
- Shielding design

Program2 Radiation Experiments with a small electron accelerator in a student lab.

Is it Possible to operate an accelerator in a room for student lab.?

Requirement of safety control:

- Accelerator based X ray generator below 1MeV.
- Operation should be under the control of a Licensed X-ray Chief Specialist. (License is not difficult to acquire)
- Need a well defined control area for safety.

Possible structure

• Control area is to be confined in a small shielding box equipped with a safety interlock system just like a laboratory X-ray device.

RIGAKU RINT 2500/PC

Estimation of dose rate for Electron Linac below 10MeV (Ref. IAEA Technical Report No.188(1979))

$H = 3.2 \times 10^{-9} N E^3 / R^2 (\mu G y / h) (s M e V^{-3} m^2)$

H=Dose rate in µGy/h

N=Number of electrons/s E=Electron energy in MeV R=Distance from the source point in m

Possible Shielding Box size

• Safety regulation \rightarrow Dose rate should be less than 20µSv/h at the outer surface.

Туре#	E(MeV)	N(e/s)	2R(m)	T(cm Pb)	Comment
#1	1	6E9	2	0	
#2	1	1.5E9	1	0	
#3	1	0.4E9	0.5	0	
#4	0.63	6E9	1	0	
#5	0.63	6E10	1	1.5	Pb weight =1ton
#6	0.4	6E9	0.5	0	
#7	0.4	6E10	0.5	1	Pb weight =170kg
	Note:	N=1E10	∼1E13 ? for Mitsubishi Betatron		

Summary

• Betatron design and prototyping may be useful in engineering education.

•Low energy (<1MeV) and low intensity (<1E10 e/s) betatron is possible to operate in a student laboratory equipped with a shielding box of reasonable size.

•Small accelerator allow various type of radiation experiments.

Thanks to:

- Prof. A. Potylitsin, Prof. V. Chakhlov
- High Beam Technology Co. Ltd.
- Mitsubishi Electric Co. Ltd.
- Japanese Ministry of E and S and T.

Collaborators are welcome