RADIATION FROM THIN, STRUCTERED TARGETS

Alper Dizdar CERN NA63, Istanbul University October, 2008

NA63

"Electromagnetic Processes in Strong Crystalline Fields"

- Approved in 2007, Participants:
- Aarhus University
 - Ulrik Uggerhoej (Spokesperson), Helge Knudsen, Heine Thomsen
- University of Florence
 - Pietro Sona
- Johennesburg University
 - □ Simon Connell, Sergio Ballestrero
- Free University, Amsterdam
 - Tjeerd Ketel
- Universidada de Coimbra
 - Allessio Mangioretti
 - Istanbul Unversity

Alper Dizdar

Papers by NA63:

Direct measurement of the Chudakov effect, Phys. Rev. Lett. 100, 164802 (2008)
On the macroscopic formation length for GeV photons, submitted to Phys. Lett. B
Addressing the Klein paradox by trident production in strong crystalline fields, in preparation (2008)

Outline

Before 2004

- Formation length, LPM effect and observations
- TSF effect and observations
- Structured targets

CERN NA63: Experiments with thin foils

Aim and outcome: 2004 experiment, with test beam

Alper Dizdar

Results from NA63, 2007

Preliminary "signs" from recent experiment

Formation length

Bremsstrahlung

$$\frac{\mathrm{d}\sigma_{\mathrm{BH}}}{\mathrm{d}\hbar w} \sim \frac{4}{3nX_o} \frac{1}{\hbar w} \left(1 - \frac{\hbar w}{E} + \frac{3}{4} \left(\frac{\hbar w}{E} \right)^2 \right)$$
$$\frac{1}{X_0} = 4n\alpha \ r_{\mathrm{e}}^2 Z^2 \ln(183Z^{-1/3})$$

Bethe, Heitler 1936

Formation length

$$l_{f} \sim 2\gamma^{2}c/\omega$$
$$l_{f} = \frac{2\hbar c\gamma^{2}(E - \hbar\omega)}{E\hbar\omega}$$

Ch

Channeling Workshop, Erice

Alper Dizdar

LPM effect

"Suppression of low energy photon yield due to Multiple Scattering"

Multiple scattering length

$$l_{\gamma} = \frac{\alpha}{4\pi} X_0$$

LPM effect

$$\begin{split} l_{f} > l_{\gamma} & \to k \leq \frac{E^{2}}{E + E_{\text{LPM}}} \\ E_{\text{LPM}} = & \frac{m^{2}c^{3}\alpha}{4\pi \ \hbar} X_{0} \sim X_{0} \cdot 7.7 \ \text{TeV/cm} \end{split}$$

Landau, Pomeranchuk 1953

Condition for LPM effect

 $l_{\gamma} < l_f < \Delta t$

Channeling Workshop, Erice

Alper Dizdar

LPM effect observations

TSF effect

Reduced multiple scattering: "Suppression of bremsstrahlung in a thin layer of matter"

Ternovskii 1960, Shul'ga, Fomin 1978

Condition for TSF effect

 $l_{\gamma} < \Delta t < l_{f}$ $\hbar \omega < \hbar \omega_{\rm TSF} = \frac{E}{1 + \frac{\Delta t}{2\gamma\lambda_{\rm c}}}$

...approximately, recoil not included

Channeling Workshop, Erice

Alper Dizdar

TSF effect observation

Channeling Workshop, Erice

Alper Dizdar

Radiation from

Structured Targets: "Sandwich"

"Radiators composed of seperated plates or of a medium varying radiation length can exhibit coherence maxima and minima in their photon spectra"

Blankenbecler, Drell: PRD 55, 190, (1997)

 "The interference pattern appears when the formation length is longer than the thickness of one plate" *Baier, Katkov: PRD 60, 076001, (1999)*

Alper Dizdar

October, 2008

2 foils, 0.7%X_o Gold, 25 GeV

CERN NA63 Experiment

"Electromagnetic processes in strong crystalline fields"

Questions 2004:

- Is it possible to regain BH spectrum with thinner foils?
 i.e. behaving as a single scatterer...
- What if $l_{\gamma} \approx \Delta t < l_f$?
- Au: X_{o} = 3.344mm, l_{γ} = 1.942 μ m
 - \rightarrow Choose 2µm Au, 0.06% X_{o}
- What about the "sandwich" effect?

Channeling Workshop, Erice

Alper Dizdar

NA63 Setup

- Power spectrum forE = 180 GeV
- BH, LPM curves
 Geant* simulations
- Δt = 1.45 ± 0.02μm
 from BH fit, ~30%
- TSF effect? NO!
- Transition radiation?

→May be...

Channeling Workshop, Erice

- •Geant simulation recompiled with LPM effect calculation
- Physical Review D (72), 112001,(2005)

Alper Dizdar

Transition radiation in the very soft part, BUT: "Multiple scattering dominated transition radiation (MSDTR)"

→Baier, Katkov: PRD (56), 1998

Results:

■ E=206 GeV ■ Target: Ta: X_0 = 4.094mm, l_{γ} = 2.378µm → Choose 5µm Ta, 0.12% X_0 Firmer spacer: Aluminium 20(5µmTa+6µmAl) Ta ~2.44% X_0 , Al ~0.12% X_0

Channeling Workshop, Erice

Alper Dizdar

- Results:
 - 1. MSDTR negligable
 - 2. $\hbar \omega_{\rm TSF}$ ~12GeV
 - 3. Structure ?

Channeling Workshop, Erice

Alper Dizdar

Similar results with different targets

2007 Data: Result

- Change to BGO, go lower energies.
- 2008 Experiments done...

Thanks to...

- Our group members.
- Organizers...
- For your attention.

Channeling Workshop, Erice

Alper Dizdar

