### Channeling 2008 : Physics of Diamond

Prepared by SH Connell University of Johannesburg October 2008

- 1. Synthesis
- 2. Properties
- 3. Applications



".... It seems, indeed, to be a general truth, that there are comparatively few diamonds without cavities and flaws and that this mineral is a fouler stone than any other used in jewelry ...." Sir David Brewster 1862

5 mm

**Courtesy J Hansen - Hansen Future Materials** 

# Diamond

## **IR Spectra**





## In nature : nitrogen aggregates The A-centre (two neighbouring substitutional N atoms)



## In nature : nitrogen aggregates The B-centre : four N<sub>s</sub> near a V



### Decomposition of the IR Spectrum

The functional forms of the absorption for  $N_S$  – single substitutional N A centers - pair of adjacent  $N_S$ 

 $N_{S}$ + - positively charged  $N_{S}$ B centers – four  $N_{S}$  at a V platelets

Are regarded as completely spanning the space of the nitrogen region absorption curve

Very rare to find even a small region within a very good natural diamond which approaches the quality (low impurities, low strain) of a very good modern synthetic diamond

.... see eg ... papers by A Lang .....









### Why diamond Beam Optical Elements



- σ high thermal conductivity,
- μ low linear X-ray absorption,
- α low thermal expansion

$$\delta\theta \propto \left(rac{\mathbf{\sigma}}{\mathbf{\mu}\mathbf{\alpha}}
ight)^{-1}$$

Diamond >> Silicon

500 x

# For Silicon : liquid N<sub>2</sub> cooling works up to 400 W/mm<sup>2</sup>

For FEL : Response to transients important

### **Properties of importance for X-ray applications**

| Material                                                                 | Beryllium | Diamond                                                   | Silicon                | Germanium |
|--------------------------------------------------------------------------|-----------|-----------------------------------------------------------|------------------------|-----------|
| Atomic number Z                                                          | 4         | 6                                                         | 14                     | 32        |
| Debye Temp T <sub>d</sub> , K                                            | 1188      | 1860                                                      | 532                    | 293       |
| Absorption coefficient, µ<br>at 8 keV (cm <sup>-1</sup> )                | 1.7       | 14                                                        | 143                    | 350       |
| Thermal conductivity, κ,<br>at 297K (Wcm <sup>-1</sup> K <sup>-1</sup> ) | 2.0       | Type I: 5-18<br>Type IIa: 20-25<br>Iso-pure:35<br>PC:4-20 | 1.5                    | 0.64      |
| Thermal conductivity, κ,<br>at 80K (Wcm <sup>-1</sup> K <sup>-1</sup> )  |           | la: 20-40<br>Ila: 150<br>Iso-pure:2000                    | Nat 15<br>Iso-pure: 20 |           |
| Thermal exp coef, α<br>at 297K (10 <sup>-6</sup> K <sup>-1</sup> )       | 11        | 1                                                         | 2.4                    | 5.6       |
| Figure of merit, 100·μκ/α<br>at 297K (MW)                                | 11        | 36-180                                                    | 0.44                   | 0.03      |

#### Additional properties for applications at FEL's

- 1. Requires thin crystals (time response)  $\rightarrow$  framed plates
- 2. Time structure of beam
  - a. Time average heat load OK,
  - b. Must dissipate high peak power on
    - 100 fs time scale (pulse)
    - 1ms time scale (bunch train)
- 3. Fast thermalisation time, damage resistant
- 4. Large head spreader, (isotopically enriched diamond)

|                                  | Diamond (nat) | Diamond (0.07% <sup>13</sup> C) | Silicon | Copper |
|----------------------------------|---------------|---------------------------------|---------|--------|
| Diffusivity (cm <sup>2</sup> /s) | 12.4          | 18.5                            | 0.86    | 1.25   |

PRB42(1990)1104 - T Anthony et al

Laser ablation damage threshold for isotopically enriched diamond  $(0.1\% {}^{13}C) 10 x$  higher than for natural diamond.

Need also data for the melt limit and photo-ionisation cross section



### Low strain diamond

#### Conclusions : "Diamond in Modern Light Sources 1 & 2"

- 1. Diamond is a very attractive material for Synchrotron applications
- 2. Symbiosis : optical and electronic (and many others)
- 3. Synthesis quality improving
- 4. Type IIa for more demanding applications
- 5. Require larger plate area and variety of orientations (100), (110), (111)
- 6. Require lower strain (low + homogenous impurities, no dislocations etc)
- 7. Coherence preservation not yet established
- 8. Surface quality must be improved !
- 9. Diamond mounting technologies



# CVD Deposition Methods





Microwave Plasma



Combustion Torch





# Diamond Chemical Vapor Deposition







Electronic grade SC-CVD (100 – 200 \$ /mm<sup>3</sup>) Optical grade PC-CVD (10 – 20 \$ /mm<sup>3</sup>)

### Nano diamond



### How good can CVD get?

- 1. Size 🙂
- 2. Purity 🙂
- 3. Strain (not as good as HPHT yet)









# HPHT Diamond

### **Growth rate related to surface density of atoms**

Growth sector dependence of N concentration, [111]>[100]>[113]>[110]

B concentration, [111]>[110]>[100]=[113]>[115]

Ni concentration, [111]

Cube growth sectors have A high denisty of perp. dislocations













Images from Growth program of the DTC







Courtesy J Hansen -Hansen Future Materials















Clockwise Visible Birefringence Top-face UV Schematic Bot-face UV







## HPHT vs CVD

#### **Techniques are complimentary – both are necessary**

- CVD growth conditions cold for diamond allow better control of impurities however, defects can freeze in. Leads to purer diamond (c<1ppb), but residual strain is compromised (bundles of dislocations emanating from defects in substrate, maybe more still Δθ>10<sup>-6</sup>). Niche is Electronic Applications
- 2. HPHT growth conditions hotter, and in the pressure capsule its more difficult to control impurities, growth is in "annealing" conditions. Leads to low strain diamond  $\Delta\theta \sim 10^{-8}$ , but more impurities, c<10ppb. Niche is Optical Applications

Situation evolves



White Beam Topographs - In each case illustrative samples (not the best available)



## For very pure diamond

#### **Point defects**

- **1.** Boron (acceptor,  $E_A = 0.37 eV$ )
- **2.** Nitrogen (deep donor,  $E_D = 1.7 \text{ eV}$ )
- 3. Hydrogen
- 4. Vacancy
  - a. **GR1** (neutral for Type IIa)
  - **b.** ND1 (negative for Type Ib)
- 5. NV (in CVD)
- 6. Ni and Co (in HPHT)

### Annealing leads to aggregation B, N are soluble (size)

# **Defect Characterisation**

..... low strain diamond .... considering central cubic region of top plate

### **Classical Techniques**

- **1. EPR** (defect concentration in ppb region) (defect concentration in ppm region) IR-Vis-UV Abs Spectroscopy 2. **Photo / Cathodo - Luminescence / Phosphorescence** 3. (defect concentration in ppb region) **Birefringence** - for strain sensitivity ... down to ppm 4. **Raman Spectroscopy** - for strain sensitivity ... down to ppm 5. 6. SIMS (some defects down to ppb region)
- **Difficulty** Beyond MDL of many techniques
  - No single technique can quantify all impurities, or all molecular forms or even charge states of the same impurity .....





Thickness = 0.619 mm

Ian Friel, Element Six



# **Rocking Curves**

- **Beam divergence**  $\Delta \theta$  ~ 0.2"
- > Beam energy resolution  $\Delta\lambda/\lambda \sim 10^{-8} \rightarrow \Delta\theta' \sim 0.0023"$

| sample      | theoretical<br>width | exp. width<br>full beam | broadening<br>full beam | exp. width<br>100 μm center | broadening<br>center |
|-------------|----------------------|-------------------------|-------------------------|-----------------------------|----------------------|
| 1173 – 001a | 1.045"               | 1.15"                   | 0.48"                   | 1.10"                       | 0.20"                |
| 1173 – 001b | 0.986"               | 1.39"                   | 0.98"                   | 1.03"                       | 0.30"                |
| 1173 – 001d | 1.056"               | 1.30"                   | 0.76"                   | 0.97"                       | 0.0"                 |
| 1173 – 001e | 1.018"               | 2.36"                   | 2.13"                   | 1.03"                       | 0.30"                |
| 1186 – 001a | 1.021"               | 1.09"                   | 0.38"                   | 1.04"                       | 0.20"                |
| 1186 – 001c | 1.021"               | 1.14"                   | 0.52"                   | 1.09"                       | 0.38"                |
| 1186 – 001d | 1.012"               | 2.47"                   | 2.25"                   | 1.73"                       | 1.40"                |
| 1149/13R    | 1.059"               | 1.33"                   | 0.80"                   | 1.13"                       | 0.39"                |

# **High-resolution diffractometry set-up**





#### WHITE BEAM TOPOGRAPHY

#### type IIa HPHT with a large inclusion







1

0.5

0.2

0.1

0.05

0.02

FWHM 0.07 "

FW20%M 0.14 "

FW2%M 0.48 "

-4

-2

2

4

6

**ESRF** 

0

footprint = 1 x 0.4 mm

# Rocking Curve Imaging: Principle

• Wide, parallel X-ray beam ID19 @ ESRF: 15 x 40 mm



- Record monochromatic X-ray topographs digitally
- "Rock" sample; take one exposure per angular position

• 
$$(\Delta \omega)^2_{\text{obs}} = (\Delta \omega)^2_{\text{def}} + (\Delta \omega)^2_{\text{Darwin}} + (\Delta \omega)^2_{\text{source}}$$

vert. gradient

ESRF

ω

const.

# Non-dispersive and dispersive set-ups

(n,-n) set-up

range of wavelengths on detector what passed 1<sup>st</sup> crystal passes 2<sup>nd</sup> full beamwidth reflected larger than source width

(n,-m) set-up

small range of wavelengths on detector Only small band passes 2<sup>nd</sup> crystal narrow beam reflected

also (n, +n) and (n, +m) set-ups





# Curved Crystal Topography (CCT)





# The consequence of dispersion





110-oriented plate
slightly distorted

100-oriented plate non-distorted

# Dispersive – non-dispersive





100-oriented plate dispersive set-up 100-oriented plate non-dispersive set-up

Non-dispersive set-up: whole crystal illuminated for one angular position, higher strain sensitivity





White beam topograph of a HPHT "last" diamond (Laue)

Rocking curve imaging with the **Curved Collimator** (Bragg)

E= 12keV Si [444] - C\* [-115]  $\Delta d/d > 3.7 \ 10^{-8}$ (detection limit)





Also with this very high strain sensitivity a rather homogenous zone is present, there crystal quality close to that of silicon



ESRF Newsletter 45(2007))27







### Thermochemicalmechanical Processing



## Feed-throughs for rotation, sensing and power

# Insert shows hot metal polishing in operation





# **Dislocation free**

-220 and 220-reflections

sample dimension  $4 \times 4 \text{ mm}^2$ 

The crystal quality seen with the strain sensitivity of white beam topography is very good! No macroscopic defects like dislocations are visible.

White beam topographs in transmission



# **Quantum Communication**

- 1. Photoluminescence
- 2. Polarised
- 3. Triggered
- 4. Photostable
- 5. Monochromatic (nm)
- 6. Short Lifetime (ns)

## N-V



- 1. N-V, spin-encoded
- 2.  $\tau \sim 58 \ \mu s$  atomic  $\rightarrow 20 \ hr$  nuclear
- 3. Single and two qubit gates
- 4. So far 5 states coupled





| Properties                    | Si   | SiC-4H | $\operatorname{GaN}$ | Diamond   |
|-------------------------------|------|--------|----------------------|-----------|
| Band gap (eV)                 | 1.1  | 3.2    | 3.44                 | 5.5       |
| Breakdown field (MV/cm)       | 0.3  | 3      | 5                    | $10^{**}$ |
| Electron mobility $(cm^2/Vs)$ | 1450 | 900    | 440                  | 4500      |
| Hole mobility $(cm^2/Vs)$     | 480  | 120    | 200                  | 3800      |
| Dielectric constant           | 11.7 | 9.7    | 8.9                  | 5.68      |
| Thermal conductivity (W/cmk)  | 1.5  | 5      | 1.3                  | 24        |
| Johnson's Figure of merit     | 1    | 410    | 280                  | 8200      |
| Keyes' Figure of merit        | 1    | 5.1    | 1.8                  | 32        |
| Baligas Figures of Merit      | 1    | 290    | 910                  | 17200     |

### Study •Charge carrier dynamics •Near surface

- •Electrically
- active defects

## **High Energy Photon physics**

## Technology –

#### use aligned particle incidence on diamond to

- 1. Produce >100 GeV quasi-monochromatic photons
- 2. Manipulate polarisation
- 3. Measure polarisation

## Physics (QED) -

- 1. Strong field effects (Lorentz boost)
- 2. Coherent enhancements

![](_page_51_Figure_9.jpeg)

![](_page_51_Picture_10.jpeg)

Polarised photons from Coherent Bremsstrahlung by 200 GeV electrons incident on aligned diamond → quasi monochromatic tagged photons

![](_page_51_Picture_12.jpeg)

NA43 NA59 NA63

![](_page_52_Picture_0.jpeg)

![](_page_53_Figure_0.jpeg)

Fig. 2. Spectral distributions of the total radiation emitted in forward direction for  $\varepsilon = 500$  MeV positrons channeling in Si along the (1 1 0) crystallographic planes for a/d = 10.

Krause et al. NIM A 482 (2002) 455-460

![](_page_54_Picture_0.jpeg)

2.0mm x 6.7mm x 146um

CL image

**WB** Торо

220 reflection

14 keV

With laser trenches

![](_page_55_Figure_0.jpeg)

![](_page_56_Picture_0.jpeg)

# Focussing in vertical plane

Bending across crystal corresponds to: 1 mrad/mm crystal!

![](_page_57_Picture_2.jpeg)

![](_page_57_Figure_3.jpeg)

![](_page_57_Picture_4.jpeg)

# **Diamond Superlattice**

**Lang Dilatation Formula** 

### Doping with nitrogen $\rightarrow$ expands the lattice

$$\frac{\Delta a}{a_0} = 0.116 \pm 0.02 \times C_N \quad \leftarrow C_N \text{ in ppm}$$

intrinsic N substitutional

KEY PHYSICAL PARAMETERS: Undulator wavelength =  $\lambda_u$  (  $\approx 0.1 \text{ mm}$ ) Undulator amplitude = a ( $\approx 50 \text{ Å}$ ) Interplanar distance = d ( $\approx 1-2 \text{ Å}$ ) Crystal thickness = t ( $\approx 1-4 \text{ mm}$ ) Number of undulator oscillations =  $N_u = t/\lambda_u$ (> 10)

### Conclusions

Showed improvements in diamond targets to eff misorientation of few 10<sup>-8</sup>

![](_page_59_Picture_2.jpeg)

![](_page_59_Picture_3.jpeg)

J Härtwig, P Van Vaerenbergh, F Masiello

![](_page_59_Picture_5.jpeg)

![](_page_59_Picture_6.jpeg)

U Uggerhøj (Århus) and the CRYSTAL collaboration

![](_page_59_Picture_8.jpeg)

R Burns, JO Hansen And Hansen Future Materials

![](_page_59_Picture_10.jpeg)