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Motivation

• Semiconductor manufacturing is a multi-billion dollar industry.

• Nanoscale lithography will be very expensive. 

• New photolithography tools are required for the fabrication of

devices having nanometre scale dimensions.

• New characterisation tools are required.

• X-ray propagation in carbon nanotubes has the potential to provide

a substantially cheaper alternative.



Background

• Coherent propagation of x-rays demonstrated in a planar waveguide,

Zwanenburg et.al. (1999)

• Possibility of channelling by neutral particles in carbon nanotubes

postulated by Zhevago and Glebov (1998)

• Recent demonstration of the growth of regular arrays of carbon

nanotubes, Milne (Cambridge) and others.



Applications

XPS

Photoelectron spectroscopy

X-ray lithography

X-rays



Structure of waveguide

x-ray transmission

silicon

SiO2

highly absorptive 

coating

carbon nanotubes



X-ray scattering at an interface

Reflection and field penetration of x-rays at an interface
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Total external reflection occurs when  < C

And the critical angle C is
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penetration depth, d0 ~ 6.4nm in carbon
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Propagation of x-rays in a planar waveguide

evanescent wave
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Field penetration depth, d0 is given by
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Propagation of x-rays in a planar waveguide

evanescent wave

d0

Field penetration depth, z0 is given by
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Coating of CNT’s demonstrated

Well ordered vertical nanotubes coated with polypyrole

J H Chen et.al., Appl Phys. A 73, 129 (2001)

Coating thickness 93 nm on carbon nanotubes

with diameter ~ 30 nm



Propagation of x-rays in CNT’s analogous to

fibre optics

coating Carbon nanotube

x-ray

Refractive index ,n, of coating 

(cladding) = 1- ( ~ 10-4)
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Low order modes in a coated CNT
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Multiwall CNT

A Loiseeau et. al, Understanding Carbon Nanotubes: From Basics to Applications

2006: Springer; 1st Edition



Growth of CNT’s  



Propagation of x-rays in CNT’s analogous to

fibre optics

coating Carbon nanotube

x-ray

Refractive index ,n, of coating 

(cladding) = 1- ( ~ 10-4)

2a



Simulation of propagation propagation must take 

account of the Multiple walls

N S Kim et. al. J. Phys. Chem., B 2003, 107, 9249



Reflectivity from 15 layers of C/Air as a function of incident 

angle and wavelength



Reflectivity from 15 layers of C/Air as a function of incident 

angle and wavelength



EM mode formed in a MWNT (7 walls) coated with gold



CNTs coated with WS2

R.L.D Whitby, et. al., Appl. Phys. A 76, 527 (2003)



HRTEM images of a MWCN coated with a) single and b) 

double layer of WS2. Scale bars=5nm 

(a) (b)

R L D Whitby et. al., Chemphyschem (2001) No 10 p.620



Reflectivity from 50 layers W/Air (2.52Å/6.2Å) on C/Air

Reflectivity with  0.5Å and 1.5° is about 6%

with  2Å and 6.5° is about 5%



Structure of Bragg fibre

Scattering matrix theory developed by A. Yeh et. al.,

J. Opt. Soc. Am., 681196 (1978)

Modified by Y Xu, et.al. J. Lightwave Technology, 20 428 (2002)



Radial component of the magnetic field, 50 nm radius

nanotube coated with W/Air (2.52Å/6.2Å)
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Reflectivity from 50 layers of W/Air (11.08Å/25.84Å)
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Radial component of magnetic field at a wavelength of 7.5Å

for 50 layers of W/Air (11.08Å/25.84Å)
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Modes established by Bragg scattering in MWNT

coated with 50 layers of W/Air



Conclusions

• Multiwall CNTs have inherent Bragg structure but reflectivity is weak

• Modelling suggests that x-ray propagation is feasible

• Coated CNTs offer potential as Bragg fibres but many layers

required for strong reflectivity

• Need experimental verification of  x-ray propagation


