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The spectral distribution of electron-positron pair created by photon and the spectral

distribution of photons radiated from electron in an oriented single crystal at intermediate

energy (a few GeV for heavy elements) are calculated. The used method permits inseparable

consideration both of the coherent and incoherent mechanisms of two relevant processes. The

interplay of the coherent and the incoherent contributions is essential for formation of the spectra.

Just in this situation the effects of multiple scattering of charged particles appear (the Landau-

Pomeranchuk-Migdal (LPM) effect). The method includes the action of field of axis (or plane) as

well as the multiple scattering of radiating electron or particles of the created pair. The influence

of scattering on the coherent mechanism and the influence of field on the incoherent mechanism

are analyzed.

The multiple scattering distorts the spectrum of radiating electron or particles of the created

pair. In tungsten, axis ¡111¿ for the pair creation process at temperature T= 100 K the distortion

of electron (positron) spectrum (the LPM effect) attains 8 % at photon energy 5 GeV and for

the radiation process at T= 293 K the LPM effect reaches 7 % at electron energy 10 GeV. In

amorphous medium only the distortion of the radiation spectrum was observed.
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Introduction

When the formation length of pair creation by a photon

lf =
ω

2m2
(1)

becomes comparable to the distance over which the multiple scattering becomes important, the

probability of the process will be suppressed. This is is the Landau- Pomeranchuk -Migdal (LPM)

effect. The characteristic energy ωe when the LPM effect affects the whole spectrum is

q2
f

m2
=

ω

ωe

, ωe =
m

4πZ2α2λ3
cnaL0

, L0 = ln(ma) +
1

2
− f(Zα),

a =
111Z−1/3

m
, f(ξ) =

∞X
n=1

ξ2

n(n2 + ξ2)
, (2)

where Z is the charge of nucleus, na is the mean atom density, f(ξ) is the Coulomb correction.
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The energy ωe is very high even for heavy elements: ωe = 10.9 TeV for tungsten and

ωe = 17.5 TeV for lead.

For radiation process the formation length

lr =
2ε(ε− ω)

m2ω
, (3)
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Figure 1: The energy losses dε
dω in iridium target with thickness l = 0.128 mm in

units of inverse radiation length is for the initial electrons energy ε = 287 GeV
CERN (2003). The Coulomb corrections are included. Curve 1 is the
Bethe-Maximon intensity spectrum, curve 2 is the contribution of the main
(Migdal) term, curve T is the final theory prediction with regard for multiphoton
emission
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Spectrum of particles created by photon in a crystal

For axial orientation of a crystal the ratio of the atom density n(%) in the vicinity of the axis

to the mean atom density na is

n(%)

na

=
e−%2/2u2

1

2πdnau2
1

,
n(0)

na

∼
�

d

u1

�2

, ω0 = ωe

na

n(0)
, (4)

where % is the distance from the axis, u1 is the amplitude of the thermal vibrations, d is the

mead distance between atoms forming the axis. The strength of the electric field in the vicinity

of the axis is

F ∼ 2V0%

%2 + 2u2
1

, Fmax ∼
V0

u1

, V0 '
Ze2

d
. (5)

The formation length of pair creation in the field is lm ∼ m/Fmax. The ratio of lf and lm is

lf

lm
∼ V0

mu1

ω

m2
∼ ω

ωm

≡ κm ∼ 1, lf ∼ lm. (6)
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It is useful to compare the characteristic energy ω0 with energy ωm for which the probability of

pair creation in the field becomes comparable with the Bethe-Maximon probability.

Here we consider the case when angle of incidence ϑ0 ¿ V0/m. This is the condition that

the distance % ∼ u1 as well as the atom density and the transverse field of axis can be considered

as constant over the formation length

∆%

u1

=
ϑ0lf

u1

∼ ϑ0lm

u1

¿ 1. (7)
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The general expression for the spectral distribution of particles of pair created by a photon

dW (ω, y) =
αm2

2πω

dy

y(1− y)

Z x0

0

dx

x0

G(x, y), G(x, y) =

Z ∞

0

F (x, y, t)dt + s3

π

4
,

F (x, y, t) = Im
n

e
f1(t)

h
s2ν

2
0(1 + ib)f2(t)− s3f3(t)

io
, b =

4κ2
1

ν2
0

, y =
ε

ω
,

f1(t) = (i− 1)t + b(1 + i)(f2(t)− t), f2(t) =

√
2

ν0

tanh
ν0t√

2
,

f3(t) =

√
2ν0

sinh(
√

2ν0t)
, (8)

where

s2 = y
2
+ (1− y)

2
, s3 = 2y(1− y), ν

2
0 = 4y(1− y)

ω

ωc(x)
, κ1 = y(1− y)κ(x), (9)

ε is the energy of one of the created particles.
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The situation is considered when the photon angle of incidence ϑ0 (the angle between photon

momentum k and the axis (or plane)) is small ϑ0 ¿ V0/m. The axis potential is taken in the

form

U(x) = V0

�
ln

�
1 +

1

x + η

�
− ln

�
1 +

1

x0 + η

��
, (10)

where

x0 =
1

πdnaa2
s

, η1 =
2u2

1

a2
s

, x =
%2

a2
s

, (11)

Here % is the distance from axis, u1 is the amplitude of thermal vibration, d is the mean distance

between atoms forming the axis, as is the effective screening radius of the potential. The

parameters in Eq.(10) were determined by means of fitting procedure, see Table.
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Table

Parameters of the pair photoproduction and radiation processes in the tungsten crystal, axis

< 111 > and the germanium crystal, axis < 110 > for two temperatures T

(ε0 = ω0/4, εm = ωm, εs = ωs)

Crystal T(K) V0(eV) x0 η1 η ω0(GeV) εm(GeV) εs(GeV) h

W 293 417 39.7 0.108 0.115 29.7 14.35 34.8 0.348

W 100 355 35.7 0.0401 0.0313 12.25 8.10 43.1 0.612

Ge 293 110 15.5 0.125 0.119 592 88.4 210 0.235

Ge 100 114.5 19.8 0.064 0.0633 236 50.5 179 0.459
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The local value of parameter κ(x) which determines the probability of pair creation in the

field is

κ(x) = −dU(%)

d%

ω

m3
= 2κsf(x), f(x) =

√
x

(x + η)(x + η + 1)
, κs =

V0ω

m3as

≡ ω

ωs

.

(12)

For an axial orientation of crystal the ratio of the atom density n(%) in the vicinity of an axis to

the mean atom density na is

n(x)

na

= ξ(x) =
x0

η1

e
−x/η1, ω0 =

ωe

ξ(0)
, ωe = 4εe =

m

4πZ2α2λ3
cnaL0

. (13)
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The functions and values in Eqs. above are

ωc(x) =
ωe(na)

ξ(x)gp(x)
=

ω0

gp(x)
e

x/η1, L = L0gp(x),

gp(x) = gp0 +
1

6L0

"
ln
�
1 + κ

2
1

�
+

6Dpκ
2
1

12 + κ2
1

#
, gp0 = 1− 1

L0

"
1

42
+ h

 
u2

1

a2

!#
,

h(z) = −1

2
[1 + (1 + z)e

z
Ei(−z)] , (14)

where L0 is defined in Eq.(2), the function gp(x) determines the effective logarithm using

the interpolation procedure, Dp = Dsc − 10/21 = 1.8246, Dsc = 2.3008 is the constant

entering in the radiation spectrum at χ/u À 1 (or in electron spectrum in pair creation process

at κ1 À 1), Ei(z) is the integral exponential function.

The expression for dW (ω, y) includes both the coherent and incoherent contributions as

well as the influence of the multiple scattering (the LPM effect) on the pair creation process. The

probability of the coherent pair creation is the first term (ν2
0 = 0) of the decomposition of Eq.(8)

12



over ν2
0

dW
coh

(ω, y) =
αm2

2
√

3πω

dy

y(1− y)

Z x0

0

dx

x0

�
2s2K2/3(λ) + s3

Z ∞

λ

K1/3(z)dz

�
,

λ = λ(x) =
2

3κ1

, (15)

where Kν(λ) is MacDonald’s function. The probability of the incoherent pair creation is the

second term (∝ ν2
0) of the mentioned decomposition

dW
inc

(ω, y) =
4Z2α3naL0

15m2
dy

Z ∞

0

dx

η1

e
−x/η1f(x, y)gp(x), (16)

where gp(x) is defined above

f(x, y) = f1(z) + s2f2(z), f1(z) = z
4
Υ(z)− 3z

2
Υ
′
(z)− z

3
,

f2(z) = (z
4
+ 3z)Υ(z)− 5z

2
Υ
′
(z)− z

3
, z = z(x, y) = κ

−2/3
1 . (17)
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Here

Υ(z) =

Z ∞

0

sin

 
zt +

t3

3

!
dt (18)

is the Hardy function.

The next terms of decomposition of the pair creation probability dW = dW (ω, y) over ν2
0

describe the influence of multiple scattering on the pair creation process, the LPM effect. The

third term (∝ ν4
0) of the mentioned decomposition has the form

dW (3)(ω, y)

dy
= − αm2ω

√
3

5600πω2
0x0

Z x0

0

g2
p(x)

κ(x)
Φ(λ)e

−2x/η1dx

Φ(λ) = λ
2
(s2F2(λ)− s3F3(λ)) ,

F2(λ) = (7820 + 126λ
2
)λK2/3(λ)− (280 + 2430λ

2
)K1/3(λ),

F3(λ) = (264− 63λ
2
)λK2/3(λ)− (24 + 3λ

2
)K1/3(λ), (19)

where λ is defined above.
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Figure 2: The spectral distribution of created by a photon pair (in units cm−1) vs
the electron energy y = ε/ω in tungsten, axis < 111 >, temperature T=100 K.
(a) The curves 1, 2, 3, 4 are the theory prediction dW (ω, y)/dy for photon energies
ω = 5, 7, 10, 15 GeV respectively, The doted curves are the corresponding
coherent contributions, the dashed curves present the incoherent contributions.
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For ω = 7 GeV the interplay of the coherent and incoherent contributions is leading to

the nearly flat final spectrum (the variation is less than 10 %, this is quite unusual). It should

be noted that for ω = 7 GeV the right end (y = 0.5) is slightly lower than the left end of

spectrum (y → 0): dW/dy(y → 0) = 2.303 cm−1 and dW (y = 0.5) = 2.215 cm−1,

while the sum of the incoherent and coherent contributions is slightly higher: dW inc/dy(y =

0.5) + dW coh/dy(y = 0.5) = 2.365 cm−1. The arising difference is the consequence of the

LPM effect. This property may be very useful in experimental study.

We define the contribution of the LPM effect into the spectral distribution of created pair as

∆p(ω, y) = −dW (ω, y)− dW coh(ω, y)− dW inc(ω, y)

dW (ω, y)
. (20)
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Figure 3: The relative contribution of the LPM effect in the spectral distribution
of created electron (see Eq.(19)) ∆p(ω, y) (per cent). The curves 1, 2, 3, 4 are
correspondingly for photon energies ω = 5, 7, 10, 15 GeV, ∆max

p =8.35 %. 17
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Figure 4: The spectral distribution of created by a photon pair (in units cm−1)
vs the electron energy y = ε/ω in germanium, axis < 110 >, temperature
T=293 K. The curves 1, 2, 3, are the theory prediction dW (ω, y)/dy for photon
energies ω = 55, 75, 95 GeV respectively, The doted curves are the corresponding
coherent contributions, the dashed curves present the incoherent contributions.
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Figure 5: The relative contribution of the LPM effect in the spectral distribution
of created electron ∆p(ω, y) (per cent). The curves 1, 2, 3 are correspondingly
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Radiation

The expression for the spectral probability of radiation used in the above derivation can be

found from the spectral distribution (dW/dy = ωdW/dε) using the standard QED substitution

rules: ε → −ε, ω → −ω, ε2dε → ω2dω and exchange ωc(x) → 4εc(x). As a result one

has for the spectral intensity dI = ωdW

dI(ε, yr) =
αm2

2π

yrdyr

1− yr

x0Z

0

dx

x0

Gr(x, yr),

Gr(x, yr) =

∞Z

0

Fr(x, yr, t)dt− r3

π

4
,

Fr(x, yr, t) = Im
n

e
ϕ1(t)

h
r2ν

2
0r(1 + ibr)f2(t) + r3f3(t)

io
, br =

4χ2(x)

u2ν2
0r

,

yr =
ω

ε
, u =

yr

1− yr

, ϕ1(t) = (i− 1)t + br(1 + i)(f2(t)− t), (21)
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where

r2 = 1 + (1− yr)
2
, r3 = 2(1− yr),

ν
2
0r =

1− yr

yr

ε

εc(x)
, (22)

where the functions f2(t) and f3(t) are defined above. The local value of parameter χ(x) which

determines the radiation probability in the field is

χ(x) = −dU(%)

d%

ε

m3
= 2χsf(x), χs =

V0ε

m3as

≡ ε

εs

. (23)
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The functions and values are

εc(x) =
εe(na)

ξ(x)gr(x)
=

ε0

gr(x)
e

x/η1,

gr(x) = gr0 +
1

6L0

"
ln

 
1 +

χ2(x)

u2

!
+

6Drχ
2(x)

12u2 + χ2(x)

#
,

gr0 = 1 +
1

L0

"
1

18
− h

 
u2

1

a2

!#
, (24)

where the function gr(x) determines the effective logarithm using the interpolation procedure:L =

L0gr(x).

The expression for dI includes both the coherent and incoherent contributions as well as

the influence of the multiple scattering (the LPM effect) on the photon emission process. The
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intensity of the coherent radiation is the first term (ν2
0 = 0) of the decomposition over ν2

0r

dI
coh

(ε, yr) =
αm2

√
3π

yrdyr

1− yr

x0Z

0

dx

x0

�
r2K2/3(λr)− (1− yr)

Z ∞

λr

K1/3(z)dz

�
,

λr = λr(x) =
2u

3χ(x)
. (25)

The intensity of the incoherent radiation is the second term (∝ ν2
0) of the mentioned

decomposition

dI
inc

(ε, yr) =
αm2

60π

ε

ε0

dyr

∞Z

0

dx

x0

e
−x/η1fr(x, yr)gr(x), (26)
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where

fr(x, yr) =
h
y

2
r(f1(z) + f2(z)) + 2(1− yr)f2(z)

i
,

z =

�
u

χ(x)

�2/3

. (27)

The next terms of decomposition of for the spectral intensity of radiation I(ε, yr) over ν2
0r

describe the influence of multiple scattering on the photon emission process, the LPM effect. The

third term (∝ ν4
0r) of the mentioned decomposition has the form

dI
(3)

(ε, yr) = − αm2
√

3

89600πx0

dyr

�
ε

ε0

�2
x0Z

0

g2
r(x)

χ(x)
Φ(λr(x))e

−2x/η1dx, (28)

where

Φ(λr) = λ
2
r(r2F2(λr) + r3F3(λr)). (29)
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Figure 6: The radiation spectral intensity (in units cm−1) vs the photon energy
y = ω/ε in tungsten, axis < 111 >, temperature T=293 K. The intensity
distribution dI(ε, yr)/dω The curves 1, 2, 3, 4 are the theory prediction for
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Conclusion

At high energy ω À ωm (ε À εm) the influence of the multiple scattering on the process

under consideration (the LPM effect) manifests itself for relatively low energy of one of the final

charged particles (εf ∼ εm ¿ ω (ε)). In this region of spectrum s3(r3) ' 0, s2(r2) ' 1 one

can present in the form

dW

dy
= s2(y)R2(ωy(1− y))− s3(y)R3(ωy(1− y)) ' R2(ε) = R2(εf),

dI

dω
= r2(yr)R2

�
ε

u

�
+ r3(yr)R3

�
ε

u

�
' R2(ε− ω) = R2(εf), (30)

So we have the scaling (dependence on the fixed combination of kinematic variables) not only for

different energies of the initial particles in a given process, but also in the both crossing processes

under consideration since this is the same combination ωy(1− y) = ε/u = ε(ε− ω)/ω. For

this reason at high energy of the initial particles the maximum value of the LPM effect for both

28



processes is defined by the maximum of the function ∆max = ∆(zm), where

∆(z) =
Rcoh

2 (z) + Rinc
2 (z)

R2(z)
− 1, zm '

εm

6
. (31)

In the low energy region ω(ε) ≤ ωm = εm this scaling remains only approximate one.

Nevertheless the value of maximum and its position vary weakly. Just this energy region is

suitable for the experimental study because the rather wide of spectrum ∆y ∼ 1 contributes. It

should be emphasized that the LPM effect is large enough for heavy elements only (it is around 8

% in the maximum for tungsten at T=100 K).
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