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Recall: waves in a straight guide
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vphase = ω/P > 1  (in units, c=1)

There are 2 kinds of modes:

- transverse electric (TE)
       Ez = 0, Bz ≠ 0
   cannot accelerate particles.

- transverse magnetic (TM)
       Bz = 0, Ez ≠ 0,

TM modes can accelerate particles, but not over long enough
distances, since vpart < 1 < vph

      Fields:                                                     Propagating mode:
Fµν or, more simply,                                F(t,x,y,z) = e-iωt eiPz f(x,y)
F = {E,B}



Solutions to have vphase<1

Cavities (usual solution)

Helical wave guide - helix period: 2π/q
- ordinary wave guide: q=0
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Previous works
The travelling wave tubes (TWT) is a particular kind of helical wave
guide, but its wall is cylindrical; inside, a metallic rod is bent helically around the
axis. It is difficult to cool this rod.

An helical waveguide can be realised by drawing helical grooves on the internal
surface of an initially cylindrical tube. This is used for powerful microwave
emitters. One advantage is a low dispersion.
   T. Wallett, K. Vaden, J. Freeman and A. Haq Qureshi (NASA/TM-1998-207414)
consider rectanglar grooves. They use a 3-dimensional code MAFIA to calculate
the dispersion curve.
   Y. Wei, W. Wang, G. Zhao, J. Sun, P. Zhou (Int. Journal of Infrared and
Millimeter Waves, 1999) consider groove profiles rectangular or made of several
rectangular steps

They calculate the modes by matching solutions valid in the different steps.



Invariance under translation × rotation

basic curve  (section of the wall at z = 0) 

cross section  
at z≠0
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F(t,r,z) = e-iωt eiPz  R(qz)  f [R(-qz) r]

r =(x,y) : transverse coordinates

R(qz) : rotation of angle qz

R(-qz) r  = transverse coordinate
               in the co-rotating frame

f(r) ={B(r),E(r)} : fields at z=0

Maxwell → differential equations in 2 dimensions for f(r)



Calculation of the modes
  1) simpler case: scalar waves, Klein-Gordon equation

Partial wave decomposition:

 Ψ(t,x,y,z) = e-iωt eiPz ∑l al eilφ e-ilqz Jl(klr)

                                           action of R(-qz) on r

Klein-Gordon relation:    kl = [ω2 - (P-lq)2]1/2

kl : radial momentum, real for    P - ω <  lq  < P + ω,
otherwise, pure imaginary



The truncation-and-sutture method

Scalar boundary condition :   Ψ(t,x,y,z) = 0 on the wall.
   It suffices to impose f(r) = Ψ(0,x,y,0) = 0 on the basic curve.

Approximate method:
- restrict the partial wave expansion to N waves  ∈ [lmin, lmax]
- impose f(rn)=0 on N ‘‘sutture points’’ {r1, r2 …rN} of the basic
  curve.
The coefficients al are then calculated by the finite linear system

                      f(rn) = ∑l al  exp(ilφn) Jl(klrn)  =  ∑l Cnl al = 0

A non-zero solution exists only when
                                       det{Cnl} = 0
 = the dispersion relation linking ω and P.



Check of the method

We applied it to the case of ordinary wave guides (q=0), of
rectangular or cylindrical section. With only N ~10-15 waves and
sutture points, the waves numbers Pm(ω) of the 2 or 3 lowest
modes were close to the exact ones, to a few percent.
   The stability of Pm(ω) was checked for
-a translation of [lmin, lmax] by one or two units,
-a translation of the x,y origin from the centre of the rectangle one or
circle.
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Numerical application of the scalar wave case:
  q≠0,  de-centered circular basis

Choosen guide parameters:
- Amplitude and wave number of the helical undulation:
  εR= 0.4 R ;       q=1.5 R-1.
- Pitch angle of the largest |r| helix:
  tan(α) = qR(1+ε) = 2.1

We looked for modes of
phase velocity 1 (=c),
i.e. we imposed P = ω.

The lowest mode is found at
  ω = P = 3.3 R-1,
with only 7 sutture points.
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3-D plot of the (scalar) wave amplitude

Re f(r)

Im f(r)

- The centrifugeal effect is mainly visible on Re f (r) 
- The asymmetry of Im f(r)  in y corresponds to a motion 
  with positive Lz , i.e., 〈 l 〉 > 0 



First conclusions, from the scalar case

- the truncation-and-sutture method is simple and robust.

- the helicity of the guide is able to slow down 
  a fundamental mode, down to vphase < 1, 
  so that particles (not only tachyons !) can surf on it. 

- the centrifugeal effect might be a problem : it may 
  suppress the field near the axis, where the particle 
  are supposed to be. 



Calculation of the mode for electromagnetic waves

- Replace f(r) by the 6-component tensor f(r) ={B(r),E(r)}
- Introduce 2 sets coefficients : al for the TM modes,
                                                   bl for the TE modes
-Replace the radial wave function Jl(klr) by the column 6-vector

Er              i pl kl J’l (klr)
Eφ               - pl l/r Jl (klr)
Ez                k2

l     Jl (klr)
Eφ      =       -pl l/r  Jl (klr)               for the TM  partial wave
Br                 ω l/r   Jl (klr)
Bφ               i ω kl   J’l (klr)
Ez                     0                             pl = P-lq,   kl = [ω2 - pl

2]1/2

- The TE  partial wave is obtained by the duality E→B, B→ -E



Boundary conditions (electromagnetic case)

s = tangent vector to the basic curve at point r.
In polar coordinates,
                                     Er . sr + Eφ . sφ = 0,
                                           qr Eφ + Ez  = 0,
                       Br . sφ  + (qr Bz  -Bφ )sr  = 0.

Only 2 of these 3 equations are sufficient. Thus, N sutture points give
2N boundary equations.
For N values of l, we have N coefficients al and N coefficients bl .
We thus get a 2N×2N linear system.



Preliminary results for electromagnetic waves

Due to lack of time, we could only calculate the lowest
mode, without making the necessary tests (changes of lmax
and lmin).
   Our preliminary result (not shown here), if correct,
shows a very small Ez  on the axis. This may be related to
the fact that, for an ordinary (q=0) circular wave guide,
the lowest mode is TE.
   We hope, for acceleration purpose, that the second or
third mode will be mainly of the TM type and have a
large enough Ez .



Other cross section shapes.
1) asymmetrical basis.

Longitudinal cut view cross section

Due to the asymmetrical basis, there are non-vanishing transverse
fields at  r = 0.
  - image charge effect may be important
  - for electrons, one may have parasitic synchrotron radiation.



Other cross section shapes
 2) symmetrical basis

The fields are invariant under parity in the transverse plane. 
There is no transverse field at  r = 0. 
Advantages: 
  - less space charge effect 
  - no parasitic synchrotron radiation in the case of electrons. 

Longitudinal cut view cross section



Résumé
1. The helical waveguide is an interesting object from the

theoretical point of view.
2. The truncation-and-sutture method seems well suited for

this probem (as well as for many problems of
electromagnetic cavities).

3. Low modes with phase velocity smaller than c are easily
obtained.

4. Uncertainties remain about their efficiencies for particle
accelation (or for the inverse process, stimulated emission
of radiation). New numerical results are waited.

5. Concerning the spontaneous emission, the upper bound
dW/dz < C Z2α/b2 proposed in my previous talk should be
applicable, if it really exists.

              Thanks you again for attention !


