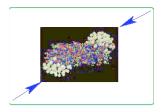


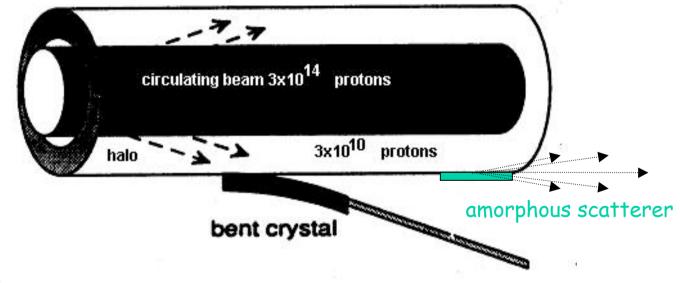
H8-RD22 Experiment to test Crystal Collimation for the LHC Walter Scandale CERN


For the H8-RD22 collaboration (CERN, FNAL, INFN, IHEP, JINR, PNPI)

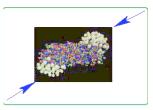
Highlight talk of HHH network at CARE 06 Frascati, 16 November 2006

November 2006

Outlook



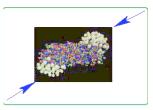
- The concept of crystal collimation
- The role of HHH
- The experiment in the H8 beam line of the SPS north area
 - Silicon crystals
 - Experimental layout
 - High precision goniometric system
 - Tracking detectors
 - Crystal Angular Scans (Strip and Quasi-Mosaic Crystals)
 - Double Reflection Effect
- Concluding remarks


- A bent crystal deflects halo particles toward a downstream absorber:
 - the selective and coherent scattering on atomic planes of an aligned Si-crystal may replace more efficiently
 - the random scattering process on single atoms of an amorphous scatterer.

- © Larger collimation efficiency
- 😊 Larger gap of the secondary collimator --> reduced impedance

November 2006

1st mini-workshops organized within the HHH-ADP work-package:


• <u>CC-05</u>: Crystal channeling and collimations in hadron storage rings, CERN, 7-8 Mar. 2005

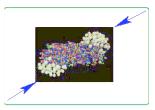
organization	scientific themes
 42 participants 	 Historical perspectives of crystal collimation
9 institutions	 Review of the state-of the-art
 18 talks 	 LHC experimentalists' mini-session (crystals for TOTEM)
 one round table 	 Discussion of a crystal experiment at the CERN-SPS

Main outcomes:

- Negative results at RHIC may depend on crystal quality.
- Meanwhile positive results on crystal collimation have been observed at the Tevatron.
- New SPS experiment (with circulating beams) has been proposed.
- 2nd CARE-HHH-APD mini-workshop on *Crystal Channeling* planned for December 2005.

2nd mini-workshops organized within the HHH-ADP work-package:

♦ <u>2nd CC</u>: Crystal channeling and collimations in hadron storage rings, CERN, 8-9 Dec. 2005


organization	scientific themes
10 participants	 Crystal collimation at the Tevatron
♦ 6 institutions	 Crystal collimation at the IHEP
♦ 6 talks	 First observation of crystal reflection
	 Crystal experiment in the external line H8 of the CERN- SPS

Main outcomes:

- Review of
 - crystal collimation data, including recent data from the Tevatron,
 - new materials and techniques for channeling of relativistic particles.
 - INTAS experimental program (first observation of beam reflection from bent atomic planes).
- Proposal to study proton small-angle scattering by oriented crystals on a CERN SPS extracted beam.
- Possible follow-up at a co-organized International Conference on Charger and Neutral Particle Channeling Phenomena at Frascati July 2006.

November 2006

3rd mini-workshops organized within the HHH-ADP work-package:


♦ <u>3rt CC</u>: Crystal channeling workshop, CERN, 9-10 Mar. 2006

organization	scientific themes
 20 participants 	 Result on channeling af IHEP and PNPI
 5 institutions 23 talks 	 Layout and detector of the SPS crystal experiment in the H8 line Simulation of the expected results in H8

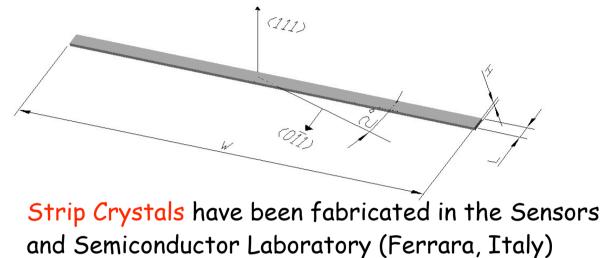
Main outcomes:

- Launcing of the collaboration H8-RD22 (CERN-INFN-FNAL-IHEP-JINR-PNPI), for the SPS experiment on channeling in the H8 beam.
- Definition of the beam parameters and the experimental layout for H8-RD22.
- Cooperative effort of HHH with EU-INTAS-CERN programme to support the networking need of H8-RD22.
- Crystals as possible tools to enlarge the physics potential of TOTEM.

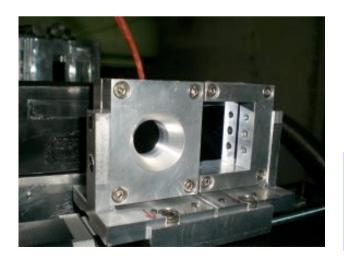
International Conference on Charger and Neutral Particle Channeling Phenomena co-organized in Frascati 3-7 July 2006

Channeling 2006:

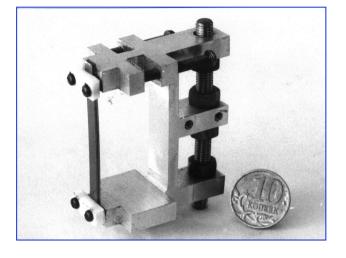
 organization 77 participants 40 institutions 10 sessions 	 scientific themes Coherent and incoherent scattering of hadrons and leptons in matter of various periodicity structure. Electromagnetic radiation by relativistic electrons and
	positrons traversing periodic targets, such as coherent bremsstrahlung, channeling radiation, transition radiation, parametric X-radiation
	 Channeling of charged particles in periodic crystals (monocrystals, complex crystals, nanostructures, etc.)


Main outcomes:

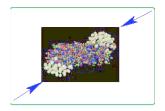
- Presentation of the H8-RD22 experiment planned in the H8 beam of the SPS north area.
- Presentations of the recent results on channeling at IHEP and PNPI

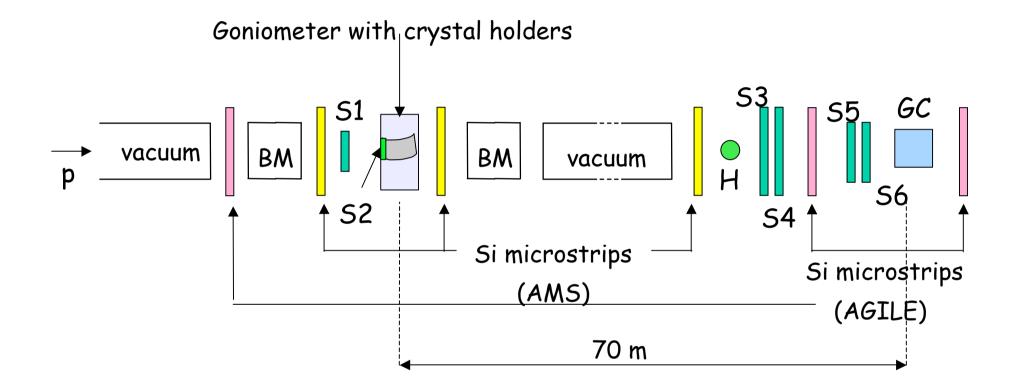


Silicon crystals

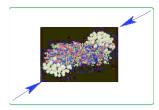


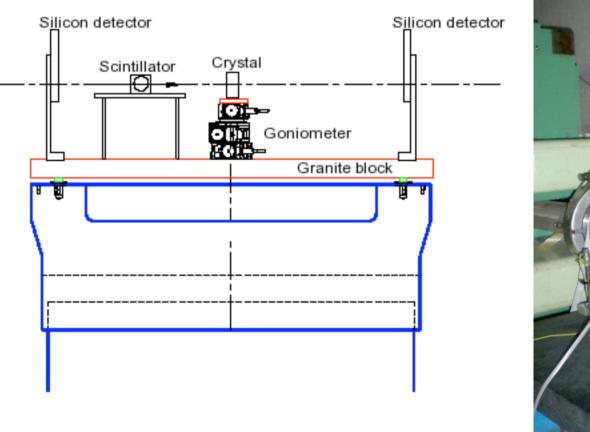
Crystal sizes: ~ 0.9 \times 70 \times 3 mm³

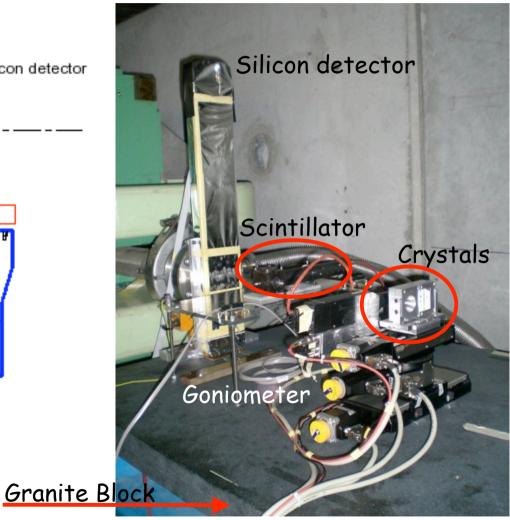

Quasi-Mosaic Crystals have been fabricated in PNPI (Gatchina, Russia) Crystal plate sizes: ~ 1 × 30 × 55 mm³ critical angle for 400 GeV/c protons $\theta_c \approx 10 \mu rad$

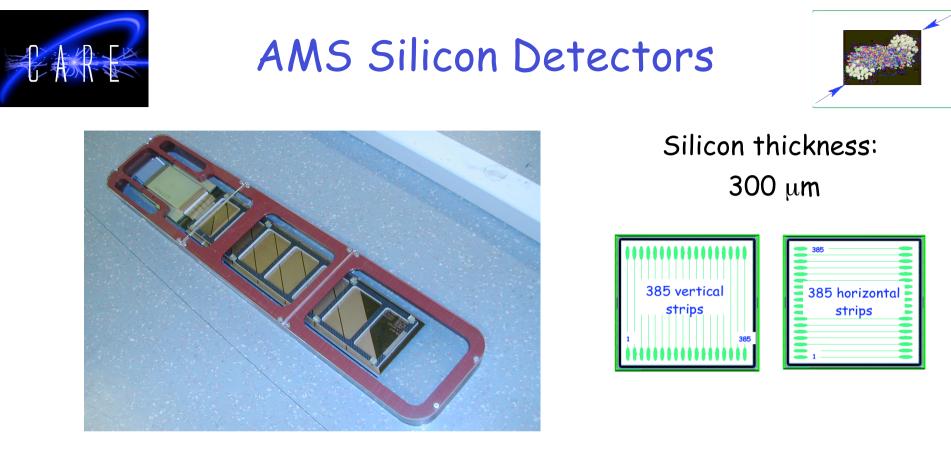

November 2006

Layout (not to scale)

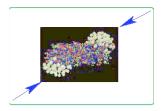



- Scintillators (S1-S6)
- Scintillating Hodoscope (H)
- Gas Chamber (GC)
- Bending Magnet (BM)

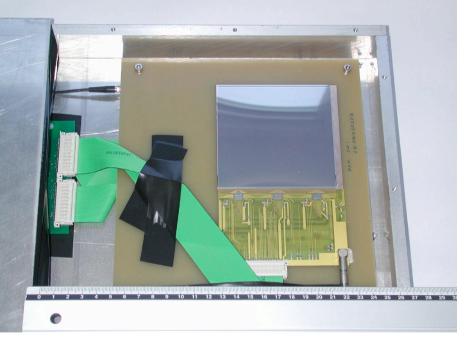

November 2006

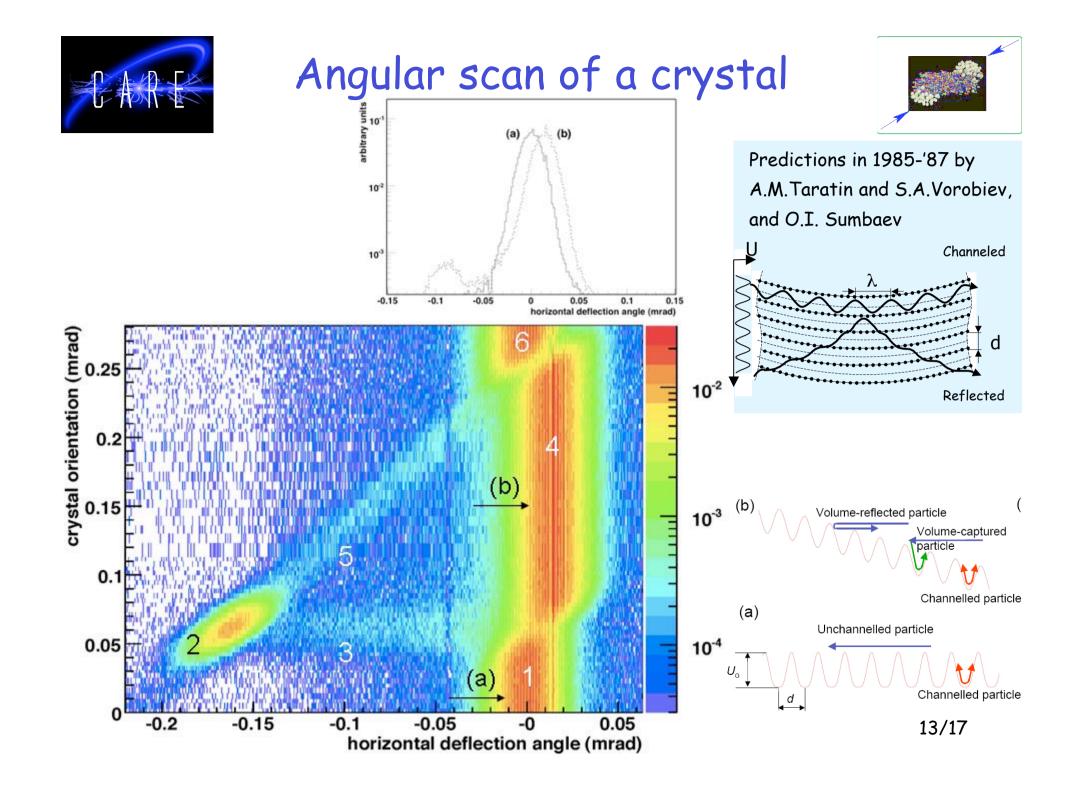


High precision goniometer

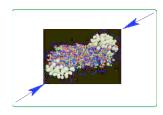


- double-sided silicon micro-strip detectors:
 - Resolution ~ 10 μm in bending direction (X coordinate)
 - Resolution ~ 30 μ m in non-bending direction (Y coordinate)
 - Active area of the 3 layers installed
 - $\sim 7.0 \times 2.8 \text{ cm}^2$, $\sim 1.9 \times 1.9 \text{ cm}^2$, $\sim 4 \times 7 \text{ cm}^2$

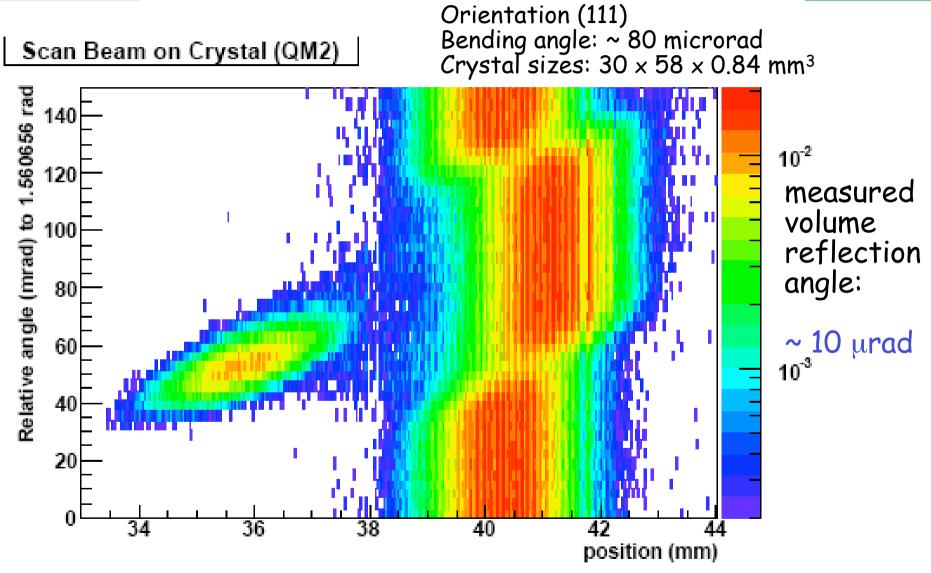


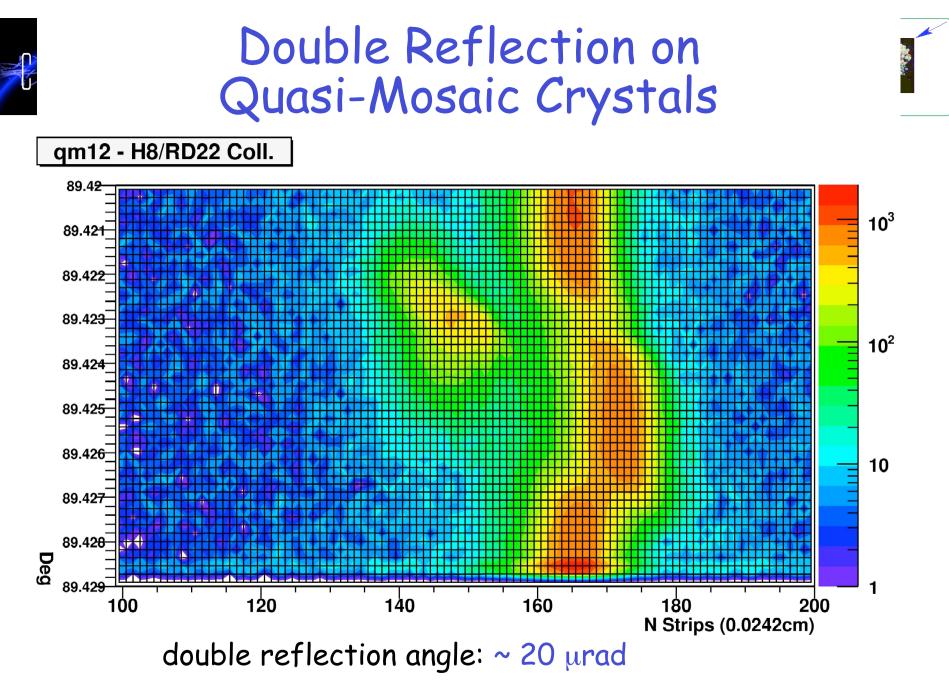

AGILE Silicon Detectors

- Single-sided silicon strip detectors
 Built by Agile (INFN/TC-01/006)
 active area 9.5 x 9.5 cm²

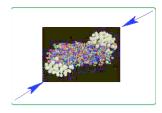

- Spatial resolution: ~ 40 μm at normal incidence (~ $30 \mu m$ for tracks at 11°)
- Silicon thickness: 410 um
- Upstream detector (before goniometer): - 2 silicon detectors at 90°
 - (corresponds to 1 X-Y plane)
- Downstream detector 1 (at 65 m) from crystal location): - 4 X-Y silicon planes
- Downstream detector 2 (at 65 m from crystal location): - 6 X-Y silicon planes interleaved with
 - 300 µm tungsten planes

Angular scan of a crystal



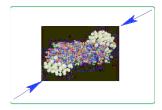


measured volume reflection angle: ~ 10 μrad



November 2006

Conclusive remarks



- First observation of Volume Reflection Effect in bent silicon crystals with 400 GeV/c protons with efficiency close to unity
- Measurement of volume reflection angle: ~ 10 μ rad
- First observation of Double Reflection using two crystals in series: combined reflection angle is ~ 20 μ rad and efficiency close to 1
- Channeling and Volume Reflection phenomena studied with Strip and Quasi-Mosaic Silicon Crystals (different fabrication techniques)
- Measurement of crystals with different crystalline planes orientations: (111) and (110)

Networking support from CARE-HHH and from INTAS-CERN programmes

Forward looking plans

- Precise measurement of the probability of Volume Reflection Effect
- Multi-reflection effect (3 to 5 proton reflections)
- Edge effects
- Use $e^- e^+$ ions
- Use new crystals (Ge, C, W) and zeolytes

... with the continuing support of CARE-HHH and INTAS-CERN programmes