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* Motivation

 Enhanced field emission of Nb surfaces

* Preparation and measurement techniques
« Statistical distribution of field emitters

* FE properties and nature of emitters
 Conclusions and outlook
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Motivation

* Accelerating fields E__.in SC Nb cavities are limited by
NC defects and protrusions and surface impurities

U / N\ [
local quenches electron loading due to field emission

* Improved Nb purity and surface preparation techniques
are required to achieve E___.>25 MV/m at Q,>10"° reliably

« Advanced surface investigation of clean Nb samples by
profilometry, scanning FE microscopy and SEM/EDX

U

Identification of relevant features for field limitation

Systematic improvement and control of surface quality
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Field emission of electrons from flat metal surfaces

Electron waves of bound states in a metal can tunnel through the potential barrier V(z)
at the solid surface into vacuum by means of the quantum mechanical tunnelling effect

Metall Vakuum
VL V(z) = -e-E-z -e?/(16me, 2)

A Tws N “\‘IA(D orE=26viml | work function @ of metal
applied field E on surface

image charge correction
AD = (e3E/ 4ne,)”
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N_
Potentialwall
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z [nm] n(E)

Calculation of the current density j(E) within the Fowler-Nordheim theory results in
YE? B ?( y)j with constants A=154 and B=6830 and

j(E):(th—(y)eXp 7

slight correction functions t(y) and v(y)
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Enhanced field emission of electrons from real surfaces

For real metal surfaces, i.e. broad area cathodes with some roughness and pollution,
nA currents occur at much lower fields (<100 MV/m) than predicted by FN theory

= modified FN theory with field enhancement factor 8 describes
at least the slope of locally measured I(E) curves quite well:

CE)? 3/2 with emitting surface S
I(E)=S A(,B(DE) B®

eXp| ———— as fit parameter

BE

Theoretical models for enhanced field emission of real surfaces:

« Geometric field enhancement for metallic protrusions/rough particulates
of height h and edge radius r,

= B = h/r,

» Metal-Isolator-Vacuum for metals with oxide layers (d < 10 nm)
= irreversible creation of conducting channels = switch-on effect

« Antenna or Metal-Isolator-Metal for particles on oxidized metals
after switch-on at § = h/d geometric field enhancement as above

« Resonant tunneling through localized states in adsorbates and oxides
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Field emission scanning microscope (FESM)

FUG power supply
5 kV, 50mA

PID voltage regulation

-
| Py, A

Picoamperemeter
Keithley 6485

Motion controller

Several ‘
W-anodes

& samples

AL Y

— 3D he}zotra‘hsla‘tor 40Am/V

Newport MM4006

H

Piezo motion controller

XYZ-motors (100nm step)

UHV system typically at 2-10-7 Pa
LabVIEW automated scans of U(x,y) for 2 nA
Scanning speed: (100%x100) pixels in 1 hr
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I/V curves and localization of stable emitters
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Profilometer with AFM and SEM with EDX

Additional surface analysis of whole samples and relocalized areas of enhanced FE

Optical profilometer with lateral resolution of 2 ym and height resolution of 3 nm
combined with atomic force microscope AFM

Scanning speed: (100x100)jpixels in 1 min

Scanning electron microscope SEM (XL-30)
with energy dispersive X-ray analysis EDX
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Preparation techniques for Nb samples

Bergische |

Nb samples prepared like cavities at DESY
Buffered chem. BCP or electropolished EP
and high pressure rinsed HPR with water
mostly in single cells, few in 9-cell cavities
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water finsing assembly HPWR
Ultra pure water p > 18MQcm
Water flow 7 - 20 |/min
Water pressure 80-150 bar
Rotation speed 4-5 rpm
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Dry ice cleaning of Nb samples (DIC)

Process developed at FH Stuttgart and adapted for cavities at DESY

Vor
Yo

j'qg) 1 valve

= S| 2 pressure

S 21 reducer

= g 3 gas purifier

% 4 chiller CO, pressure ~ 50 bar
) \_J Sl N _pressure: 12 - 18 bar

Particle filter < 0.05 ym

3 cleaning effects:
CO, temperature > -40°C

* Mechanically
» impact of snow crystals = shearing forces
* Chemically
* liquid CO, is good solvent for hydrocarbons
* Thermally
* rapid cooling = brittling of contaminants
 sublimated volume i mcrease x 500

i, &?z&— }
‘at Wuppertal s CAREO06, Frascati



Quality control scans of EP/HPR-NDb prepared in 9-cell cavity

Profiles of whole sample and central part of sample PID-regulated U(x,y) for 1 nA
scanned area 20x20 mm? 5x5 mm?2 scanned area = 7.5x7.5 mm?2
»« flat W-anode @_= 100 pm
anode voltage U = 4800 V
electrode spacing Az = 32 um

40
T

no emission @ 120MV/m
O T N T - = 1 5 emitters @ 150MV/m
’ 1 20'3“'"“ Lrnin] . ! . 1 lestance [rar] i * U
Line scans = grooves < 2 ym, roughness < 0.2 ym best EP/HPR sample yet
| : =Y
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Emitter distribution on single crystal Nb after BCP/HPR

Alternative approach for mirror-like surfaces: large crystal No+BCP30um/HPR
PID-regulated voltage maps U(x,y) for 1 nA scanned area = 7.5x7.5 mm?
flat W-anode &, = 100 um

anode voltage U = 4800 V
electrode spacing Az = 32 ym

Az =24 ym

no emission @ 120MV/m
2 emitters @ 150MV/m

5 emitters @ 200MV/m
= best FE performance of all Nb samples yet

i 4
G. Mdller, 15.11.2006

=7

s Bergische

&)

o

i il
AR

/4'5

. A=
at Wuppertal T g

I||i1| )

CAREO06, Frascati



Emitter statistics for various types of Nb samples

30 ® —m— ScNb1 single crystal #1
— —e— ScNb2 & #2, BCP30HPR
5 CryNb1 3 large grains #2
® %7 —v— CryNb2 & #1, BCP30HPR
o .| * QeoNbt EP+HPR at DESY
£ 20- —<—SEP*D EP+HPR+DIC
5 SEP* EP+HPR
5 « | ® SEP EP at Saclay
2 7
2
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r— T 1 T 1 T — T T T T 1
40 60 80 100 120 140 160 180 200 E

E: applied electric field (MV/m)

=2 X Eacc

peak

Systematically reduced FE by EP+HPR, DIC and large crystal Nb
BCP-!-_!:_I;PR of large crystal Nb is probably sufficient
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Locally measured I/V-curves and FN-Analysis of emitters

Typical FN-plots of a stable

In (LEZ)

{1/E)

E..(1nA) = 76.9 MV/m

-l
0,002 (.004 0.00& 0.004 0

0.002

0.004 0.006 0.008
(1/E)

E..(1 nA) = 103.3 MV/m

Br=19.3 S;=1x10"1m? Br=17.4 S,=1x10-"1m?2
B, =179 S¢=5X10'13m2 B, =31.2 S¢=3><1O'16m2

4. 2 . 3/2
n(/(E)/E?) = In> fpﬂ - B; ;
activated deactivated emitter

] 0.0025 0005 00075 001 00125 OUnS
{LJE)

E_ (1 nA) = 54.3 MV/m
BT= 67.4 ST= 2x10-1" m?2
B,=61.2 S,= 1x10-15m?

After first processing, most emitters are stable up to 100 nA
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Current processing of instable emitters

-4

-31,5-
[T S P
E..(1 nA) =33 MV/m E (1 nA) . 44.6 MV/m
Br=231 S, =3x10"19m?2 B¢—595 Sy = 8x10-10m?2
B,=160 S, =2x10-1"m?2 B,=119 S, =1x10-16m?2

Fluctuations / oscillations most probably caused by adsorbates
Understandmg of instabilities and nature of emltters very difficult
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Typical protrusion emitters containing only Nb (+ O?)

Acc¥ Spot Magn Det WD 1 100 m
10.0kV 3.0 257x SE 5.1

E..(2nA) < 60 MV/m
~500 um long scratch
(mishandling of sample)

AccV  Spot Magn Det WD
10.0ky 40 33791x TLD 49
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AccY SpotMagn Det WD 1 &um
10.0kv 30 5738x SE b2

E,.(2nA) =90 MV/m
~5 um long groove
B=71,S=2.3-106um?

E..(2nA) > 140 MV/m
~1 um small defect
B=59,S=7-108um?2
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Typical particulate emitters containing impurities

500 nm

AccV SpotMagn Det wD b—— 500 nm
500kv 30 65301x TLD 48

AccY SpotMagn Det WD ——— 2m ot Magn  Det WD | 1 2um

100kv 30 7520x SE 48 ) 8231x SE 47 Eon(2nA) > 120 MV/m
E_.(2nA) =140 MV/m E_.(2nA) = 132 MV/m B=46,S=6-107pm?
B: 31’ S=6.810°% |Jm2 B - 27’ S=7-105 |Jm2 SiKa

2 um

Al Al

Si

Al Nb
Al

Mg Nb NbLa

bLI
blLg
1 Y | X1 Ve [ VA S ey &
Nb 0.50 1.20 1.80 2.40 3.00 3.60
Nb Nb Nb
Mg Nb N ,Nb

g bt il il i n

15D 1.00 1.50 2 00 7 B0 3.00 380 4_0[0.40 080 1.20 1.60 200 240 280 320 3.60 4.00
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Effect of DIC on particulate and protrusion emitters

AccV SpotMagn Det WD —— 20ym AccV  SpotMagn Det WD ————————— 50um
150kV 3.0 1167 SE 49 Sb4b-2TIF 9.00kv 3.0 728x SE 45
E,.(1nA) =77 MV/m Protrusion | HPR HPR+DIC
S particulate removed by DIC | g (vv/m) | 4835 103.3

By 166.7 17.4
By 147 31.2
Sy (m?) 1.6 x1020 | 9.6 x 1012
S| (m?) 7.2 x1020 | 3.3 x1016

FE of protrusion much reduced by DIC
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Effect of DIC on a flake-like emitter with exposed edge

111¢-GvSS 06 IS X9L0¢ 0€ A100G
QM 180 ubep jodg A90

. wrl |

emitter of ~ 20 pm size destroyed by DIC
remnants emitting at higher E__!

EDX: no foreign element detected
(probably oxide of Nb)

G. Miller, 15.11.2006 Bergische

TR,

HPR HPR+DIC
E,, (MV/m) | 54.3 62.8
Bs 67.4 35.4
By 51.2 38.0
Sy (m?) 2x 107 |83 x1013
S, (m?) 1.2 x 1015 | 2.4 x 1013
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Correlation between FE onset field and emitter size ?

based on FE measurements and SEM analysis of 38 field emitters

200 - ,
| = scratch width (19)
180 4 * particle average size (19)
160 - . *
140_ e * ~ ~
— i ex v * * .
< 1204 . - x e
Al : %
£ 100 4 L *
L - . E._ =40 MV/m (ILC)
acc
80 - - N S
- ) ‘ 30 MV/m (XFEL)
' 2.5/ um G
40 1 H 8/um
! L ! L ! L
0.1 1 10 100

scratch width or particle size (um)

Evidence for correlation = fast FE quality control by emitter size
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Conclusions and outlook !

« Standard EP+HPR Nb sample provides good FE performance
no field emission up to E_, =120 MV/m = E__ =60 MV/m

« Large Nb crystal BCP+HPR samples show best FE results
— interesting alternative for cavity fabrication !

 Particulates and protrusions identified as relevant emitters

 DIC effectively removes particulates and weakens protrusions

* After first processing, most emitters are stable up to 100 nA
— instabilities and nature of emitters challenging !

 Evidence for correlation between onset field and emitter size
— fast FE quality control on samples for XFEL !
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