(Nuclear physics at) the Electron-Ion Collider

Alberto Accardi Hampton U. and Jefferson Lab

Quark Matter Italia

Rome, July 23rd, 2010

my gratitude for discussions, ideas, slides, to

J.Arrington, E.Aschenauer, W.Brooks, F.Caola, I.Cloet, A.Daniel, R.Dupre, R.Ent, S.Forte, V.Guzey, K.Hafidi, C.Keppel, M.Lamont, V.Litvinenko, A.Majumder, J.Rojo, T.Ullrich, Y.Zhang, ...

Overview

- The EIC project
- 🖵 EIC science
- Basics of Deep-Inelastic Scattering
- Selected topics
 - Saturation and the Color Glass Condensate
 - Nuclear structure functions at medium-, large-x
 - Parton propagation and fragmentation in QCD matter
- Conclusion

Appendices: useful links, additional observables

The EIC project

The EIC project

NSAC 2007 Long-Range Plan:

"An Electron-Ion Collider (EIC) with polarized beams has been embraced by the U.S. nuclear science community as embodying the vision for reaching the next QCD frontier.

EIC would provide unique capabilities for the study of QCD well beyond those available at existing facilities worldwide and complementary to those planned for the next generation of accelerators in Europe and Asia."

The EIC project

US initiative driven by the QCD community in NP

Colliding

- (un)polarized electrons up to 20 (30) GeV
- Hadrons
 - protons up to 250 GeV
 - ions up to Au/U at 100 GeV
- with unprecedented luminosities (> 100x Hera)
- 🗕 Unique
 - High energy eA collisions
 - Polarized beams:
 - e↑p↑
 - e个 ³He个
- 🗕 Timeline: ~ 2020

2 competing designs

2 competing designs

MEIC / ELIC at Jefferson Lab

electrons: use CEBAF as is after 12 GeV upgrade

protons/ions: build 2 rings in stages

- MEIC: up to 60 GeV (p), 24 GeV (Pb)
- ELIC: up to 250 GeV (p), 100 GeV (Pb)
- emphasizes luminosity

Alberto Accardi

prebooster

lon

2 competing designs

eRHIC at Brookhaven National Lab

electrons: build energy-recovery linac, in-tunnel e-ring, 6 passes

20 Ge

10 GeV

5 GeV

- energy from 5 to 30 GeV
- staging: 1-2 passes, E_e = 5-10 GeV

2 competing designs: e+p

2 competing designs: e+A

Overlapping, but not identical, science programs

BNL and JLab are working in concert with DOE on strategy to downselect the design **EIC** science

Why electrons on protons / ions ?

ep/eA collisions are the perfect instrument for high precision studies. They are the ultimate microscope.

DIS is the master method to understand the quark and gluon structure of hadrons and nuclei

Alberto Accardi

An early modern, popular and wrong view of the proton

The Proton

The Neutron

- Proton made of 2 up (u) quarks and 1 down (d) quark.
 - u-quark has charge +2/3
 - d-quark has charge –1/3
- The neutron is just the opposite: 2 d's and 1 u
 - hence it has charge 0
- The u and d quarks weigh the same, about 1/3 proton
 That explains the fact that m(n) = m(p) to ~0.1%
- Every hadron in the Particle Zoo has its own quark composition

Not quite... as seen by a high-energy electron, m_u , $m_d \sim few MeV$ So what's missing from this picture?

Slides modified from T.LeCompte – LHC talk at Argonne / J.Arrington, Argonne workshop, 2010

Alberto Accardi

Energy is stored in field

Thunder is good, thunder is impressive; but it is lightning that does the work. (Mark Twain) Energy is stored in electric & magnetic fields

- Energy density $\sim E^2 + B^2$
- The picture shows what happens when the energy stored in earth's electric field is released
- Energy is also stored in the proton's gluon field
 - There is an analogous E² + B²
 - Nothing unusual about the idea of energy stored there
 - What's unusual is the amount:

	Energy stored in the field
Atom	10-8
Nucleus	1%
Proton	99%

Slides modified from T.LeCompte – LHC talk at Argonne / J.Arrington, Argonne workshop, 2010

Alberto Accardi

Energy is stored in field

Thunder is good, thunder is impressive; but it is lightning that does the work. (Mark Twain)

	Energy stored in the field
Atom	10-8
Nucleus	1%
Proton	99%

Slides modified from T.LeCompte – LHC talk at Argonne / J.Arrington, Argonne workshop, 2010

Alberto Accardi

The modern proton

- 99% of proton's mass/energy is due to this self-generating gluon field
- The "valence quarks" (uud)
 - act as boundary conditions on the field
 - determine the electromagnetic properties
 of the proton (gluons are electrically neutral)
- Proton and neutron mass are similar:
 - the gluon dynamics is the same
- Valence quarks don't even carry all of the proton's spin:
 - gluon / sea-quark spin?
 - orbital angular momentum?

The modern nucleus

- EMC effect discovered more than 30 years ago:
 - quarks / hadrons are modified inside a nucleus
 - − A \neq Σ p,n
 - still a theoretical mistery
- Nuclear gluons much less known
- Significant potential for
 - learning more about QCD
 - discovery of unexpected physics
- Use as filter / detector of propagating objects
 - hadronization, color confinement
 - color transparency

A common thread - a "glue" if you will...

How do we understand the visible matter in our universe in terms of the fundamental quarks and gluons of QCD?

 $L_{QCD} = \bar{q} \left(i \gamma^{\mu} \partial_{\mu} - m \right) q - g \left(\bar{q} \gamma^{\mu} T_a q \right) A^a_{\mu} - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$

The key to the answers is the Gluon:

- it represents the difference between QED and QCD
- Cannot "see" the glue in the low-energy world

Despite their preeminent role, properties of gluons in matter remain largely unexplored ⇒ EXPERIMENTS

What is the nature and role of gluons, and their self-interactions?

- physics of Strong Color Fields (saturation/non-linear QCD)
- **study the nature of color singlet excitations** (Pomerons)
- role of gluons in atomic nuclei (EMC/antishadowing, glue vs. qrks)
- test and study the limits of universality (eA vs. pA)

What is the nature and role of gluons, and their self-interactions?

What is the spin and 3D quark-gluon structure of the nucleons?

- origin of proton's spin, role of angular momentum
- □ 3D spatial landscape of nucleons (GPDs, exclusive processes)
- **3D momentum landscape** (TMDs, seminclusive processes)

What is the nature and role of gluons, and their self-interactions?

What is the spin and 3D quark-gluon structure of the nucleons?

Understand the transition of quarks and gluons into hadrons

How do fast probes interact with the gluonic medium?

(energy-loss, color transparency)

How do gluons and color confinement turn a quark into a hadron?

(semi-inclusive on A vs. D)

What is the nature and role of gluons, and their self-interactions?

What is the spin and 3D quark-gluon structure of the nucleons?

Understand the transition of quarks and gluons into hadrons

Electroweak physics (studies underway)

Parity violating interactions as a tool (PVDIS, charged currents)

- precision study of quark structure of the hadrons
- Beyond the standard model
 - Lepton Flavor and Number Violation

What is the nature and role of gluons, and their self-interactions? (inclusive, diffraction, jets) What is the spin and 3D quark-gluon structure of the nucleons? (semi-inclusive, exclusive, jets) Understand the transition of quarks and gluons into hadrons (semi-inclusive, jets) Electroweak physics (studies underway)

(inclusive, missing mass)

Basics of DIS

DIS kinematics

Resolution power ("Virtuality"): $Q^2 = -q^2 = -(k - k')^2$ $Q^2 = 4E_e E'_e \sin^2\left(\frac{\theta'_e}{2}\right)$

Inelasticity:

$$y = \frac{pq}{pk} = 1 - \frac{E'_e}{E_e} \cos^2\left(\frac{\theta'_e}{2}\right)$$

$$x = \frac{Q^2}{2pq} = \frac{Q^2}{sy}$$

Alberto Accardi

Quark Matter Italia 2010

8

Structure functions, quarks and gluons

Alberto Accardi

pQCD fits: from structure functions to partons

pQCD analysis of structure functions (and other observables) allows us to extract the quark q(x,Q²) and gluon g(x,Q²) distributions, with x = fractional momentum of the parton

 $Q^2 = 10 \text{ GeV}^2$ HERA-I PDF (prel.) experimental uncertainty model uncertainty 0.8 HERA Structure Functions Working Group Nucl. Phys. B 181-182 (2008) 57-61 XU_v 0.6 ≍ xg (×1/20) At NLO 0.4 xd, xS (×1/20) 0.2 0 10⁻² 10⁻³ 10-1 10^{-4} х

At LO, x=x_B

$$F_2(x,Q^2) = \sum_q e_q^2 x q(x,Q^2)$$

 $F_L(x,Q^2) = 0$

$$egin{aligned} F_{2,L} &= \sum_{i=q,g} H^i_{2,L} \otimes f_i \ &rac{dF_2}{d\ln Q^2} \propto G \end{aligned}$$

pQCD fits: from structure functions to partons

pQCD analysis of structure functions (and other observables) allows us to extract the quark q(x,Q²) and gluon g(x,Q²) distributions, with x = fractional momentum of the parton

Quark Matter Italia 2010

Alberto Accardi

29

selected topics: gluons at small x

Issues with our current understanding

Linear DGLAP Evolution Scheme

- Low Q²
 - ▶ G(x, Q²) < Q_{sea}(x, Q²) ?
 - ▶ G(x, Q²) < 0 ?
- Large Q²
- built in high energy "catastrophe"
- G rapid rise violates unitary bound

Linear BFKL Evolution Scheme

- Density along with σ grows as a power of energy
- Can densities & σ rise forever?
- ► Black disk limit: $\sigma_{total} \le 2 \pi R^2$

Alberto Accardi

Issues with our current understanding

Linear DGLAP Evolution Scheme

Alberto Accardi

Something's wrong: gluon density is growing too fast Gluons must saturate at some point (gluon need to recombine, not only split) What's the underlying dynamics? Is our understanding of low-x hadrons adequate? Black disk limit: $\sigma_{total} \leq 2 \pi R^2$ In Q²

Saturation and Color Glass Condensate

Review: Gelis et al., arXiv:1002.0333

Stability of the theory requires maximum gluon occupation number ~ 1/ $\alpha_{_{\rm s}}$

at which point further growth is damped

- \Box gluons with $k_{T} < Q_{s}(x)$ saturate
- saturation scale grows as x decreases
- gluon dynamics is non-pert. but weakly coupled:

$$\alpha_{s} \sim \alpha_{s} (Q_{s}^{2}) \ll 1$$

Saturation and Color Glass Condensate

Review: Gelis et al., arXiv:1002.0333

CGC is an effective theory of small-x gluons in the Infinite Momentum Frame,

describing saturation and the approach to the saturation regime

Effective degrees of freedom

- large-x color sources ρ
 - stochastic distribution W[ρ]
- small-x gluon fields A^{μ}
- valid approximately at $x < 10^{-2}$

Renormalization group

- separation scale $Y = \ln(1/x)$
- JIMWLK evolution equation $\frac{\partial W_Y[
 ho]}{\partial W_Y[
 ho]}$
- Universality
 - fixed RG point, similar to spin glasses

CGC and the Quark-Gluon Plasma

Shattering 2 CGC sheets provides the initial conditions for QGP evolution: the "Glasma"

Experimental evidence: e+p at HERA

Deviation from DGLAP evolution [Gelis, 2008; Caola, Forte, Rojo, 2010]

- cut out data in "saturation region" at low $\boldsymbol{\tau}$
- fit PDF in "safe" region

DAT/TH DIST: CUT

- DGLAP evolve backwards:
 - fit is systematically below data (too much DGLAP evolution)
 - full fit partly mimics saturation

Using very precise combined HERA data

36
Experimental evidence: d+Au at RHIC

Large rapidity hadrons

Suppression of Cronin effect at large y > 1

- due to proximity to shadowing region
- $x_{sat} \approx (p_T/\sqrt{s})e^{-y} \approx 0.001$

EIC cannot compete with HERA in e+p

EIC well outside "sat" region

Requiring Q² lever-arm, needs e+p with at least

$$\sqrt{s} = 1 - 2TeV$$

- unrealistic in the US
- LHeC in Europe

Alberto Accardi

EIC cannot compete with HERA in e+p

EIC well outside "sat" region

Requiring Q² lever-arm, needs e+p with at least

$$\sqrt{s} = 1 - 2TeV$$

- unrealistic in the US
- LHeC in Europe

Alberto Accardi

Use nuclei to boost Q_{sat}

- Probe interacts over distances $L \sim (2m_N x)^{-1}$
- For $L\gtrsim 2R_A\propto A^{1/3}$ interacts coherent'... with the whole nucleus

Pocket formula

$$Q_s^2 \sim \frac{\alpha_s x G(x, Q_s^2)}{\pi R}$$

HERA, BFKL: $xG \sim 1/x^{1/3}$
 $G_A \sim AG$
 $R_A \sim A^{1/3}$
 $\left(Q_s^A\right)^2 \approx c Q_0^2 \left(\frac{A}{x}\right)^{\frac{1}{3}}$

Use nuclei to boost Q_{sat}

- Probe interacts over distances $L \sim (2m_N x)^{-1}$
- For $L \gtrsim 2R_A \propto A^{1/3}$ interacts *coherently* with the whole nucleus

Pocket formula

$$Q_s^2 \sim \frac{\alpha_s x G(x, Q_s^2)}{\pi R}$$

HERA, BFKL: $xG \sim 1/x^{1/3}$
 $G_A \sim AG$
 $R_A \sim A^{1/3}$
 $\left(Q_s^A\right)^2 \approx c Q_0^2 \left(\frac{A}{x}\right)^{\frac{1}{3}}$

Alberto Accardi

Quark Matter Italia 2010

Use nuclei to boost Q_{sat}

Nuclear targets:

- gain factor 7 in Q_s
- loose factor ~ 2 in √s
 [~0.4 in log(x)]

EIC will study the approach to saturation

LHeC will go in the deep saturation region

selected topics: partons at larger x

Nuclear quark and gluon distributions

Parton distributions in nuclei are modified compared to free nucleons **over the entire range of Bjorken x** because of various nuclear effects.

From low to large x

- Saturation
- Nuclear shadowing
- Anti-shadowing
- **EMC** effect
- 🖵 Fermi motion
- Short-Range Correlations, non nucleonic d.o.f.

Alberto Accardi

Measurements and techniques

Quarks

Neutral current F₂

- day 1 measurement (inclusive)
- proton and deuteron
- spectator tagging
- semi-inclusive mesons

flavor separation

- \square charged current F_2 , F_3
 - requires high luminosity (studies underway)
- Proton vs. deuteron
- **Spectator tagging** $e+D \rightarrow n+X$, $e+D \rightarrow n+X$
 - basic test of nuclear effects

Measurements and techniques

Gluons

DGLAP evoultion / scaling violation of F2 ($\delta F_2 / \delta \ln Q^2$)

- day 1 measurement (inclusive)
- $\Box F_{L}^{2} \sim xG(x,Q^{2})$
 - requires running at more than one \sqrt{s}
- 2+1 jet rates
 - sensitive to larger x

Diffractive vector meson production ~ [xG(x,Q²)]²

- most sensitive to saturation
- challenging experimentally

Baseline - F₂(p)

- MEIC 4+60 GeV (s = 1000)
 - larger s (~4000 MeRHIC, or ~2500 MEIC) would cost luminosity
- 0.004 < y < 0.8
- Luminosity ~ 3 x 10³⁴
- 1 year of running (26 weeks) at 50% efficiency, or 230 fb⁻¹
- Dominated by systematics ~ 1-2 %
- Larger luminosity useful at large x

Baseline - F₂(D)

- MEIC 4+30
- 1 year of running (26 weeks) at 50% efficiency, or 35 **fb**⁻¹

Even with 1/10 statistics, improvement compared to past is impressive

EIC will have excellent kinematic for n/p at large x!

Baseline - projected impact on global fits

Sensible reduction in PDF error, will be larger than shown if energy scan is performed

Quark Matter Italia 2010

EMC effect - quarks

After 30+ years, still a significant mistery:

- Binding and Fermi motion: not quite enough
- \Box *Pion cloud:* disagrees with π +A Drell-Yan
- Point-Like Configurations, Quark-Soliton coupling, ...
- Exotics: partial deconfinement, 6 quark bags, ...

EMC effect - quarks

EIC measurements

- Large Q² range
 - really Q²-independent?
- polarized EMC effect
 - candidate: ⁷Li
- isospin dependence
 - needs large selection of light-to-heavy targets
- flavor tagging with semi-inclusive hadrons
 - but: hadron production is also modified on nuclei (see later)

Alberto Accardi

Quark Matter Italia 2010

Bound nucleons

Spectator tagging

- measure neutron F, in D target
 - flavor separation
- measure proton F, in D target
 - unique at colliders
 - nuclear and off-shell effects
 (a piece of the EMC puzzle)
- proton, neutron in light nuclei
 embedding in nuclear matter
 (a piece of the EMC puzzle)

Bound nucleons

Forward detection requirements

- Spectator neutron moves forward Light ions bent, but less than beam
- "straightforward" detectors
 - Zero Degree Calorimeter
 - wire chamber (e.g.) few meters away from IR
 - can do both D and He ?
- But... good performance required:
 - small to high spectator momentum, p_s , decent resolution
 - good angular resolution (challenging):
 backward spectators required to minimize Final State Int's

EMC effect - gluons

Nuclear gluons almost unknown

– only direct constrain is d+A -> π +X

EMC ratio for FL tracks nuclear gluons: $F_L^A/F_L^D \approx G_A/G_D$

Alberto Accardi

Quark Matter Italia 2010

EMC effect - gluons

Measurement

- \Box requires running at a few \sqrt{s}
- at least 100 times HERA luminosity

Example at eRHIC

- □ Run at 10+100, 5+100, 5+50 GeV
- Integrated lumi = 4, 4, 2 fb⁻¹ (10 weeks, L=4x10³³ cm⁻²s⁻¹, 50% duty)
- 1% energy to energy normalization

dominated by systematic uncert.

EIC can greatly contribute to measuring gluons nuclear modifications

Alberto Accardi

Quark Matter Italia 2010

selected topics: hadronization in nuclei

Parton propagation and fragmentation

Review: Accardi et al., Riv.Nuovo Cim.032,2010

- Nuclei as space-time analyzers
- Non perturbative aspects
 - Color confinement dynamics
 - Probe nuclear gluons
 - new look at TMDs in "bound" nucleons
 - novel access to gluon GPDs

Perturbative QCD

- testing pQCD energy loss
- DGLAP evolution, parton showers, jets

Parton propagation and fragmentation

Review: Accardi et al., Riv.Nuovo Cim.032,2010

 e^+

- Nuclei as space-time analyzers
- **Non perturbative aspects**
 - Color confinement dynamics

 Partons created in the medium can be used as color probes of nuclear gluons when parton lifetime and energy loss mechanisms are under theoretical control

- testing pQCD energy loss
- DGLAP evolution, parton showers, jets

Cold vs. hot

Quark Matter Italia 2010

The EIC - large v, Q^2 , W^2 , \mathcal{Z}

Multi dimensional binning!

Large *v***-range**: 10 < *v* < 1600 GeV

- large v: can experimentally isolate pQCD energy loss
- small v : detailed studies of (pre)hadronization

Large Q²: role of virtuality in hadron attenuation

 p_{τ} -broadening

strong constraints to theory models

Heavy flavors: B, D mesons ; J/psi "normal" absorption

Jets: "real" pQCD, IR safe jets, first time in e+A

- jet shape modifications
- measure nuclear gluons

Photons: decouple from medium, tests parton propagation

Plus: dihadron correlations, baryon / target fragmentation, BEC, ...

Light quarks: π^0 vs. η

- can precisely test
 - dominance of energy loss over absorption mechanism
 - is π^0 as much suppressed as η as seen in QGP? Is K as much as Φ ?

$$R_M^h(z_h) = \frac{1}{N_A^{DIS}} \frac{dN_A^h(z_h)}{dz_h} \Big/ \frac{1}{N_D^{DIS}} \frac{dN_D^h(z_h)}{dz_h}$$

Light quarks: π^0 vs. η

- can precisely test
 - dominance of energy loss over absorption mechanism
 - is π^0 as much suppressed as η as seen in QGP? Is K as much as Φ ?

$$\Delta \langle p_T^2 \rangle = \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$$

Alberto Accardi

Light quarks: π^0 vs. η

 \Box Compare with A+A at RHIC: $\pi^0 pprox \eta < K pprox \Phi$

$$R_{AA}^{h}(p_{T}) = \frac{\left(dN^{h}/d^{2}p_{T}\right)_{A+A}}{T_{AA}(b)\left(d\sigma^{h}/d^{2}p_{T}\right)_{p+p}}$$

Heavy quarks: D vs. B

Large mass allows pQCD calculation of energy-loss, fragmentation

Predicted to loose less energy than light quarks

not observed in the QGP at RHIC

Requires

- secondary vertex resolution < 100 μ m
- high luminosity, especially for B mesons

Heavy quarks: D vs. B

Large mass allows pQCD calculation of energy-loss, fragmentation

Predicted to loose less energy than light quarks

Requires

- secondary vertex resolution < 100 μ m
- high luminosity, especially for B mesons

Jet production in e+A

- 1+1 jets: study energy loss
 - jet rates vs. cone: gluon radiation boradens the jets
 - rates vs. p_T^{min} , E^{min} :

more handles on energy loss

- 2+1 jets: access to nuclear gluons
 - after energy-loss under control from 1+1 studies

Quark

Other venues to explore

Target fragmentation

- observe particles that received energy from the scattered parton as opposed to observing particles that lost that energy
- determine the centrality of photon-nucleus scattering

Bose-Einstein correlations between produced hadrons

- measure the source size of an excited color string, string tension
- nuclear modification

Nuclear modification of Cahn effect

- more handles on quark energy loss
- info on flavour dependence of nuclear modification of TMDs

The EIC

THE next generation QCD machine, a unique opportunity for fundamental physics

Alberto Accardi

appendix: useful links

The JLab Nuclear Chromo-Dynamics (NCD) group

Co-chairs (W. Brooks, K. Hafidi)

D. Gaskell is the liaison between the NCD group and the detector group

wiki: https://eic.jlab.org/wiki/index.php/E-A_Working_Group

- Exclusive reactions (DVCS, shadowing and anti-shadowing, nuclear form factors)
 V. Guzey (chair), S. Dhamija, R. Dupre, H. Egyian, A. El Alaoui, F-X. Girod, S. Gilad, G. Ron,
 D. Higinbotham, L. Zhu
- Nuclear effects (EMC effect, medium modification, shadowing and anti-shadowing)
 J. Arrington (chair), D. Dutta, D. Gaskell, S. Gilad, K. Joo, P. Reimer, P. Solvignon, R. Ent
- Short range structure (correlations, Bose-Einstein correlations)
 M. Sargsian (chair), J. Arrington, S. Gilad, D. Higinbotham, P. Solvignon, W. Brooks, J. Gilfoyle, K. Hafidi
- Color in nuclei (color transparency, color glass condensate, hidden color)
 D. Dutta (chair), L. El Fassi, M. Holtrop, R. Ent

Propagation in nuclei (parton propagation, hadronization)
 A. Accardi (chair), W.Brooks, R.Dupre, L.El Fassi, J.Gilfoyle, H.Avakian, A.Majumder, T.Mineeva, J.Gilfoyle, A.Daniel

Strong support from theorists: C. Degli Atti, L. Frankfurt, K. Gallmeister, B. Kopeliovich, J. Miller, U. Mosel, J. Nemchik, I. Ryckebush, I. Schmidt, M. Strikman, S. Brodsky, , P. Hoyer, X-N. Wang, F. Arleo, S. Ahmad, S. Liuti, M. Siddikov

Alberto Accardi

Welcome

This is the home page of the EIC e+A Working Group. The group focusses on the e+A aspects of a future Electron Ion Collider (EIC). If you are curious about the EIC and its physics please visit our **Introduction** page. There you can learn about the physics opportunities in e+A collisions with an Electron Ion Collider and much more. More information can be found on the official EIC **Collaboration web site**. If you are looking for more details on current machine concepts, good places to start are the eRHIC pages at BNL and the ELIC material available on the JLAB web site. If you are interested in the project please join our mailing list. Our **Contact** page explains how. The **Documents** site contains all a lot of material related to e+A physics but also provides more general information about the EIC. Our **Talks** page lists all talks given at our EIC seminars and presentation given by members of the group. The **Computing** page provide information on computing resources availabel to us, our software and information on how to get started. This page is for collaborators only.

See our Contact page if you want to get in touch with one of the e+A working group conveners. This page is hosted by Brookhaven National Laboratory.

News

Visit to IP2

On September 26th, as part of an informal EIC meeting at BNL, people visited the IP2 region of the RHIC ring. For photos, click here. (9/26/2008, macl)

EIC in "RHIC News"

An article has been published in the latest edition of RHIC news, authored by Christine Aidala, giving an overview of the physics drivers behind the EIC project. (7/30/2008, macl)

EIC Seminars at BNL

Our EIC seminars are currently taking a Summer Break. Look under the Talks link for previous seimnars. When resumed, they will take place on Thursdays at 10:30am usually in the Orange Room. Speakers and/or meeting topics will be announced on the mailing list and here. (7/30/2008, macl)

http://www.eic.bnl.gov/

"Nuclear Chromo-Dynamic Studies with a Future EIC" Argonne National Lab, April 7-9, 2010

A unifying theme or a glue if you will ...

42 participants and 5 Physics sessions organized by the sub-groups chairs

Nuclear effects (6 talks)

Exclusive reactions (5 talks)

Color in nuclei (5 talks)

Propagation in nuclei (8 talks + colloquium)

Short range structure (4 talks)

Talks available at http://www.phy.anl.gov/mep/EIC-NUC2010/talks/

Alberto Accardi
"Gluons and quarks at high-energy" INT, Seattle, Sep 13 - Nov 19

week	dates	topics
1	13–17 Sept	Workshop on "Perturbative and Non-Perturbative Aspects of QCD at Collider Energies"
2	20–24 Sept	open conceptual issues: factorization and universality, spin and flavor structure, distributions and correlations
3–5	27 Sept -15 Oct	small x, saturation, diffraction, nuclear effects; connections to p+A and A+A physics; fragmentation/hadronization in vacuum and in medium
6–7	18–29 Oct	parton densities (unpolarized and polarized), fragmentation functions, electroweak physics
8–9	1–12 Nov	longitudinal and transverse nucleon structure; spin and orbital effects (GPDs, TMDs, and all that)
10	15–19 Nov	Workshop on "The Science Case for an EIC"

http://www.int.washington.edu/PROGRAMS/10-3/

Alberto Accardi

appendix: additional material

Experimental evidence: e+p at HERA

Geometric scaling

- similar λ
- [Caola, Forte, 2008]

Superfast quarks - Short range correlations @ larger Q² and smaller x

- $\Box x_{B} > 1$ possible with
 - high-momentum nucleons
 - exotics: 6q bags, ...
- □ For s=1000, L \approx 10³⁴, statistics running out for x > 0.9 – 1
 - Need to evaluate statistics for lower s, larger x
 - Not clear how high in x required to isolate short-range structure we are interested in

Multi-dimensional binning

- Simulation with PYTHIA 6.4.19
 - no nuclear effect yet
 - 10 weeks of beam at eRHIC
- High statistics: 5D distributions
- \Box Large range in p_T , Q^2
- Small to large x_B: LO vs. NLO
- \Box Large range in v
 - small v hadronization inside A

Quark Matte

- large v precision tests
 - QCD en. loss
 - DGLAP evolution
 - parton showers

Alberto Accardi

10⁻¹

charged pions

eRHIC 20+100 GeV

10²

 10^{3}

 P_{+}^{2} 10

Bose-Einstein Correlations

HBT interferometry of identical particles

- access to spatial size and temporal duration of hadronization
- how is this modified in nuclei?
- In DIS, access to the string tension

Alberto Accardi

Bose-Einstein Correlations

HBT interferometry of identical particles

- access to spatial size and temporal duration of hadronization
- how is this modified in nuclei?
- In DIS, access to the string tension

Photons

Photon induced radiation, analogous to gluon bremsstrahlung

- but photons do not self-interact, escape the medium
- Advantages over gluons
 - calculable angular pattern relative to hadron
 - different from fragmentation g, absorption g

[VITEV, PLB 2005]

N.B. The calculation is for coherent FS gluon emission. Expect similar pattern for γ

Alberto Accardi

Photons

Relax eikonal approximation: access to nuclear gluon GPDs [Majumder]

Alberto Accardi