AMS

W.J. Burger INFN Perugia

 Introduction
 Constraints / Environment AMS-01

- AMS-02 Detector
- Preparativi and launch dates

INFN-Spazio Frascati, Italia 16 febbraio 2005

Alpha Magnetic Spectrometer (AMS)

- The AMS is a large acceptance (~0.5 m²sr) detector designed to operate on the International Space Station(ISS), version AMS-02, for a long duration (3y) measurement of the cosmic-ray spectra (~500 MeV to several TeV).
- The spectrometer will provide precise measurements of the cosmic-ray composition up to Z~26, including light isotope separation, and is intended to provide a unprecedented sensitive search for antimatter and dark matter.
- A first version of the device (AMS-01) was operated successfully on a 10-day shuttle flight in June, 1998.

Constraints

- Vibrations and shock loads during launch
- The space vacuum
- The radiation environment (thermal and ionizing)
- Payload mass
- Payload power
- Bandwidth for data transmission

Space Environment

Cosmic Ray Composition: ~90 % hydrogen nuclei ~9 % helium nuclei ~1 % heavier nuclei < 1 % electrons ~0.1 % positrons < 0.1 % gamma rays $< 10^{-4}$ antiprotons

Space Environment

Cosmic Ray Detection in Space

- At relativistic energies, above ~1 GeV/n the detection techniques such as dE/dx-E or time-of-flight are inoperative or impractical
- A magnetic spectrometer provides an alternative, and allows a determination of the sign of the particle charge.
- Balloon-borne magnetic spectrometers are used to study cosmic rays, limited by fight times (currently 10-20 days)
- A fundamental constraint for a spaceborne device is the small fluxes at highest energies (above ~1 PeV).

AMS-01

- TOF layers S1-S4 provided the velocity and dE/dx
- The tracker planes T1-T6 yielded the rigidity, dE/dx, and the sign of the charge
- Cherenkov counter discriminated between positrons (electrons) and protons (antiprotons) below 3.5 GeV/c
- The anti-coincidence counter ACC was used as a veto
- LEPS, low energy (< 5 MeV) particle shield

AMS-01 Permanent Magnet

- Cylindrical form to optimize acceptance/weight
- Composed of 640, 2"x2"x1" high grade NdFeB blocks
- Dimensions: inner dia. 1.115 m outer dia. 1.298 m length 0.80 m
- Weight: 2.2 t
- 0.14 T field at center
- Negligible dipole field,
 B < 3 G at 2 m from center

AMS-01 Silicon Tracker

- Tracker (T1-T6) composed of 4.136 x 7.205 x 0.03 cm³ doublesided, silicon micron-strip sensors
- implantation/readout strip pitch p-side: 27.5/110 microns (y) n-side: 26.0/208 microns (x)
- Point measurement resolutions
 ~10 and ~30 microns
- 57 ladders (2.1 m² of silicon), geometric acceptance ~0.3 m²sr
- 58,368 analog channels read out with a low-noise, low-power (0.7 mW/ch), high dynamic range (75 mips) front-end chip

AMS-01 Shuttle Flight STS-91

100 Hz

100

50

0 Longitude 150

-80

-150

-100

-50

AMS-01 Results Cosmic-Ray Fluxes (p, He)

AMS-01 Results Antihelium Search

AMS-01 Results Undercutoff Particle Populations $(p,e^-,e^+,{}^{3}He)$

AMS-02

AMS-02 Superconducting Magnet

AMS-02 Coil Characteristics

Parameter	Helmholtz	Racetrack
Height [mm]	1081	826
Width [mm]	681	306
no. of turns	3360	1457
cross sec- tion [mm]	88×146	54 × 103

$BL^2 = 0.8 \ Tm^2$

AMS-02 Silicon Tracker

Tracker Thermal Control System (TTCS) Liquid CO_2 used to remove heat generated by the front-end electronics in the interior of the magnet.

Ladder: implantation strip pitch n-side 26 - 104 microns

Plane: $6 \rightarrow 5$, layers of silicon $6 \rightarrow 8$

• TOF:

- Curved light guides and fine mesh PMs.
- Time resolution \sim 140 ps.
- Segmentation reduced to
 8, 8, 10, and 8 paddles per plan.
- ACC:
 - Sixteen 22 x 83 cm³ scintillator paddles, thickness reduced from 10 to 8 mm.
 - The number of PMs is reduced from 32 to 16
 - Light collection with scintillating fibers

- TRD:
 - 20 layers of 21 mm thick polyethylene/polypropylene fleece radiator alternating with 6 mm dia. gas-filled straw tubes (80% Xe, 20% CO₂ @ 1 bar; 50 kg of gas embarked for 3 y operation (p rejection 10^2 - 10^3 in range 20 to 250 GeV with 90% e[±] detection efficiency)
 - Straw tubes grouped in 16-tube modules, 328 modules are arranged in a conically-shaped octagonal structure.
 - Layers are oriented orthogonally to provide 3-dimensional track reconstruction.

- Ring-Imaging Cherenkov (RICH):
 - 3 cm thick radiator consisting of 1.13 x 1.13 x 1 cm³ silica aerogel tiles (n ~ 1.03-1.05) is mounted on support panel of last TOF plane
 - Cherenkov photons detected in an array of 680, 25 mm² multinode (4 x 4) PMs @ 800 V, located 45 cm from the radiator; a 64.3 x 63.8 cm² aperture in front of the ECAL limits the geometric factor to ~ 0.4 m²sr

 velocity measurement resolution ~0.1%, light isotope separation between 2 to 10 GeV/n, charge identification up to Z~26

Test Beam Results – Particle Charge with RICH and Tracker with **RICH** 10³ 10⁵ Number of events **0**⁴ **0**³ **0**² 10 1 30 5 10 15 20 25 0 ¹⁰ 15 Z RICH 5 20 25 0 y04K419

Nuclear charge (Tracker + RICH)

- ECAL, a Pb-scintillating fiber sampling calorimeter:
 - The 65.8 cm² is divided in 9, 1.85 cm thick "superlayers", each "superlayer" consists of 11, 1 mm thick grooved Pb foils interleaved with layers of 1 mm dia. scintillating fiber.
 - Each "superlayer" is read out by 36 multi-anode PMs @ 650 V with a 0.9 x 0.9 mm² pixel size.
 - Radiation length of 9.6 mm
 ⇒ calorimeter thickness 17.3 X₀
 - E_{TOT} from a few GeV to 1 TeV with an energy resolution of 11.9% / $E^{1/2}$ (GeV) + 2.8%

- DAQ:
 - ~227,300 channels (196,608 for the tracker), 16 bits/channel with event rates up to 2 kHz represent a raw data rate of 7.0 Gb/s
 - DAQ electronics must reduce to allocated 2 Mb/s downlink rate.

JHIF

JIM-CAN

JIM-AMSW&1553

Activities Prior to Launch

- Complete subsystems
- Thermal vacuum and vibration tests of key detector elements
- EM testing
- Final detector integration (CERN) present estimate exceeds 430 d
- Test beam (?)
- Delivery to NASA 6 months before launch date

Launch Dates (at present)

• Projected date for resumption of shuttle flights June 2005

• Projected data for AMS-02 launch second half of 2007

AMS-02 on the ISS

