CP violation in neutrino physics

Gabriela Barenboim Da⊕ne 2004

We know that neutrinos are massive and oscillate !

Evidence for flavor change

Solar neutrinos: Compelling evidence

Reactor neutrinos: very strong evidence

One pair of parameters fits both solar and atmospheric data

Atmospheric neutrinos: Compelling evidence

Accelerator neutrinos: interesting evidence

Observe 72 ν_{μ} events

Expect 106 v_{μ} events in far detector

The hypothesis $v_{\mu} \rightarrow v_{\tau}$ with one pair of parameters fits both the atmospheric and accelerator data

LSND: unconfirmed evidence

What have we already learnt?

We do not know how many neutrino mass eigenstates there are.

Assuming CPT, confirmation of LSND by MiniBooNE would imply there are more than 3

Neutrinos

Required Δm^2 eV²

solar - reactor

atmos.- accelerator 10⁻³

LSND

1

Neutrinos

Required Δm^2 eV²

solar - reactor

atmos.- accelerator 10^{-3}

The neutrino mixing matrix

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

maximal

small ... at best

large

Three unknown oscillation parameters

The three steps

(1) What is the size of $sin^2(2\theta_{13})$?

(2) What is the mass hierarchy ? What is the sign of Δm_{13}^2 ?

Normal mass hierarchy

Inverted mass hierarchy

We determined that $m(K_L) > m(K_S)$ by

Passing kaons through matter (regenerator)

>Beating the unknown sign[$m(K_L) - m(K_S)$] against the known sign[reg. ampl.]

We determined that $m(K_L) > m(K_S)$ by >Passing kaons through matter (regenerator) >Beating the unknown sign[$m(K_L) - m(K_S)$] against the known sign[req. ampl.]

We will determine the sign(Δm_{13}^2) by

>Passing neutrinos through matter (Earth)

> Beating the unknown sign(Δm_{13}^2) against the known sign[forward $v_e e \rightarrow v_e e$ ampl]

(3) Is there CP violation? Measure δ

How we are going to do it?

Method 1: accelerator experiments

$$Appearance experiment v_{\mu} v_{e}$$

$$Appearance experiment v_{\mu} v_{e}$$

$$Measurement of v_{\mu} v_{e} and \overline{v_{\mu}} \overline{v_{e}} yields \theta_{13} and \delta$$

>Matter effects present, baselines of O(100-1000 km)

The off axis idea

By going off axis, the beam energy is reduced and the spectrum becomes very sharp.

Allows an experiments to pick an energy for the maximum oscillation length.

What will we get? 1.5 GeV L = 732. km5 ~**cos**δ $\delta m^2 < 0$ 4 3 $\overline{\nu}_{\rm e})>$ δ З $\stackrel{\wedge}{\scriptstyle |}$ ~sin∂ vac $< P(\overline{
u}_{\mu}$ 2 0 Ж $\delta =$ 1 $\delta m^2 > 0$ $3\pi/2$ $\sin^2 2\theta_{13} = 0.05$ 0 3 2 5 1 4 $sin^2 2\theta_{13}$ $< P(\nu_{\mu} \rightarrow \nu_{e}) > \%$

Minakata and Nunokawa

Minakata and Nunokawa

Method 2: reactor experiments

$$P_{ee} \approx 1 - \left(\sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E_v} + \left(\frac{\Delta m_{21}^2 L}{4E_v}\right) \cos^4 \theta_{13} \sin^2 2\theta_{13}\right)$$

> Disappearance experiment $\overline{v_e} \rightarrow \overline{v_x}$ > Clean measurement of θ_{13} > No matter effects, baselines O(1 km)

Reactor experiments: the past

Reactor experiments : the future

Reactor experiments : the future

R. McKeown

What do we hope to get?

Some understanding of the physics at high mass scale, the physics of flavor and unification.

The next to next to next step

