Design considerations for Energy/Luminosity upgrade

A. Gallo for the DA *P*NE team

DAFNE2004, June 11th 2004, Frascati

so far ...

short term

What's next ?

- 1. No major upgrades Do the best with the existing hardware
- 2. Minimum change for E upgrade (to 1.1 GeV/beam) Preserve operation @ Φ
- 3. New machine for both E upgrade and $L > 10^{33} @ \Phi$
- 4. New machine for L > 10^{34} @ Φ

What's next ?

- 1. No major upgrades Do the best with the existing hardware
- 2. Minimum change for E upgrade (to 1.1 GeV/beam) Preserve operation @ Φ
- 3. New machine for both E upgrade and $L > 10^{33} @ \Phi$
- 4. New machine for L > 10^{34} @ Φ

The Road to L > 10³²

- Negative momentum compaction: shorter bunch
- Lower β_y
- Lower Tunes
- Reaching 2 A per beam

"Hourglass" effect

Gain in luminosity by squeezing the bunch vertical dimensions through the β -function is only possible if the bunch length is also decreased

Bunch length

Negative momentum compaction α_c

$\frac{\Delta L}{L} = \alpha_C \frac{\Delta p}{p}$ relates normalized one-turn path elongation and energy deviation

 $\alpha_c > 0$ (usual): particles with higher energy run a longer closed orbit $\alpha_c < 0$ (possible): particles with higher energy run a shorter closed orbit

The bunch wake has always a positive slope on the bunch core.

For positive (negative) momentum compaction the stable phase is on the RF negative (positive) slope.

The wake is defocusing for $\alpha_c > 0$ (bunch lengthens), while it is focusing for $\alpha_c < 0$.

- Bunch is shorter with a more regular shape
- Longitudinal beam-beam effects are less dangerous
- Microwave instability threshold is higher
- Sextupoles can be relaxed since head-tail disappears

Experimental Data from UVSOR

References: 1. M. Hosaka et al., Nucl.Instr.Meth. A407 (1998) 234-240 2. M. Hosaka et al., APAC98, 426-428

Experimental Data from SUPER-ACO

References: 1. A. Nadji et al., EPAC96, 234-240

More than 100 mA have been stored in a single bunch without sextupoles!!

The DAFNE Case: Bunch Length and Energy Spread Simulations

 $\alpha_c = -0.024$ seems to be an optimum considering given DA Φ NE wake: - microwave threshold is equal for the positive and the negative momentum compaction (~10-12 mA) -bunch length does not exceed 1.5 cm up to the bunch current of 30 mA

Change of the Working Point: toward lower tunes

• Enlarging the Dynamic Aperture

 Possibility to shift the working point closer to integers

Evolution with no major upgrades

	K Physics	Hyper- nuclei	Exotic atoms	
2004	2 10 ³²	10 ³²	10 ³²	
2006	>2 fb ⁻¹	0.5 fb ⁻¹	0.5 fb ⁻¹	
2007	>2 10 ³²	>2 10 ³²		
2010	10 fb ⁻¹	>1 fb ⁻¹		
2011	???	???	???	
	KLOE	FINUDA	SIDDHARTA	

What's next ?

- 1. No major upgrades Do the best with the existing hardware
- 2. Minimum change for E upgrade (to 1.1 GeV/beam) Preserve operation @ Φ
- 3. New machine for both E upgrade and L > 10^{33} @ Φ
- 4. New machine for L > 10^{34} @ Φ

C. Ligi, R. Ricci INFN - LNF

 e^+e^- in the 1-2 GeV range - Alghero 12/9/2003

Dipole Section – preliminary design

high saturation

Magnetization curve

Collaboration with BINP (may 2004)

Pavel Vobly is looking at the possibility of designing a higher magnetic field dipole fitting our vacuum chamber and space constraints

VEPP2000 dipole – 2.4 T normal conducting

Φ and n-nbar sharing DAFNE

Energy (GeV)	0.51	1.1
Current (A)	1 - 2	0.5
Luminosity (10 ³²)	2	1
N bunches	100	30
l/bunch (mA)	10-20	17
τ damping (msec)	70/40	11/9
Uo (keV)	4.3 / 9.3	64 / 84
τ (h)	<1	> 4

Minimum modifications for E upgrade & Φ

	K Physics	Hyper- nuclei	Exotic atoms	1 to 2.2 GeV physics	
2004	2 10 ³²	10 ³²	10 ³²		
2006	>2 fb ⁻¹	0.5 fb ⁻¹	0.5 fb ⁻¹		
2007		SHUT	DOWN		
2008	2 10 ³²	2 10 ³²		10 ³²	
2010	3 fb ⁻¹	1 fb ⁻¹		1 fb ⁻¹	
2011	???	???	???	???	
	KLOE	FINUDA	SIDDHARTA	n-nbar	
Cost				10 Accel	
(M€)				10 Linac	

What's next ?

- 1. No major upgrades Do the best with the existing hardware
- 2. Minimum change for E upgrade (to 1.1 GeV/beam) Preserve operation @ Φ
- 3. New machine for both E upgrade and $L > 10^{33} @ \Phi$

4. New machine for L > 10^{34} @ Φ

Damping time vs. energy

Optimization of luminosity at low energy by **increasing** I₂

3-Pieces SC Dipole (Wiggler like)

$$I_2 = \int_{dipoles} \frac{ds}{\rho^2} = \int \frac{|B|^2}{(B\rho)^2} ds$$

$$\theta = \frac{1}{B\rho} \oint B \, dl = 2\pi$$

E = 1.1 GeV $\int Bds = 1.8 \text{ Tm}$ Bending angle = 30° $I_2 = 0.38 \text{ m}^{-1}$ $U_0 = 94 \text{ keV}$

E = 0.5 GeV $\int Bds = 0.9 \text{ Tm}$ Bending angle = 30° $I_2 = 1.46 \text{ m}^{-1}$ $U_0 = 17 \text{ keV}$

Total length of arcs – 20 m

Φ and n-nbar sharing new DAFNE very preliminary considerations

Energy (GeV)	0.51	1.1
Current (A)	3	1
Luminosity (10 ³²)	10	5
N bunches	100	50
l/bunch (mA)	>20	20
τ damping (msec)	6	3

SC DAFNE for upgrading both E & Φ Luminosity

	K Physics	Hyper- nuclei	Exotic atoms	1÷2.2 GeV physics	>3 GeV
2004	2 10 ³²	10 ³²	10 ³²		
2006	>2 fb ⁻¹	0.5 fb ⁻¹	0.5 fb ⁻¹		
2007	SHUTDOWN				
2008	10 ³³	10 ³³		>10 ³²	>10 ³²
2012	10 fb ⁻¹	1 fb ⁻¹		>1 fb ⁻¹	>1 fb ⁻¹
2013	???	???	???	???	???
	KLOE	FINUDA	SIDDHARTA	n-nbar	J/ Ψ, τ
Cost				50 Accel. ,	10 Linac
(ⅣI€)					

What's next ?

- 1. No major upgrades Do the best with the existing hardware
- 2. Minimum change for E upgrade (to 1.1 GeV/beam) Preserve operation @ Φ
- 3. New machine for both E upgrade and $L > 10^{33} \bigcirc \Phi$
- 4. New machine for L > 10^{34} @ Φ

Strong RF Focusing (SRFF)

Modulation of bunch length along the ring with a minimum at the IP

Layout similar to present DA Φ NE rings:

One IR Second crossing for injection, **RF**, diagnostics

Short inner arc and long outer arc with the condition of equal longitudinal phase advance between cavity and IP in both directions

rf

$$R_{56}(rf \to IP) = R_{56}(IP \to rf)$$

Table name = TWISS

Table name = TWISS

With ± 10σ_x clearance, ± 9° cone, ±30 mrad angle: QD1: L= 20 cm, pole radius = 1.5 cm, R_{ext} = 3 cm, pm thickness= 1.5 cm QF2: L= 20 cm, pole radius = 11 cm, R_{ext} = 16 cm, pm thickness= 1.5 cm, 4 cm space between 2 quads QD3: L= 20 cm, pole radius = 15 cm, R_{ext} = 63 cm, 25 cm space between 2 quads

First evaluation by E.Levichev, P.Piminov^{*)} BINP, Lavrentiev 13, Novosibirsk 630090, Russia

Dipole parameters

Ту ре	Α	В	С
Ν	22	22	4
Alfa [rad]	0.6545	0.8528	0.5236
Chord [m]	0.607	0.781	0.489
Sagitta [m]	0.050	0.085	0.032
Mag lenght	0.618	0.805	0.494
Vol Fe[mc]	0.282	0.362	0.227
Vol Cu [mc]	0.041	0.047	0.037
Weight Fe [kg]	2222	2859	17 89
Weight Cu [kg]	359	4 10	324
Total Weight [kg]	2581	3269	2113
Power [W]	7234	8260	6537

NI[A]	26350
J[A/mmq]	3.2
Total power [kW]	370

Cost evaluated: 1600 k€

10m

Injection system upgrade

- The proposed
 transfer lines pass in
 existing controlled
 area
- Additional shielding needed in the area
 between the accumulator and
 DAFNE buildings

Crossing point section schematic layout

SIDE VIEW

10m

MAIN PARAMETERS		
C (m)	105	
E (MeV)	510	
f _{rf} (MHz)	497	
V (MV)	10	
ε _x (μ rad)	0.26	
ε _y (μ rad)	0.002	
α_{c}	- 0.165	
β _x * (m)	0.5	
β _y * (mm)	2.0	
N / bunch	5 e10	
h	180	
L /bunch (cm ⁻² sec ⁻¹)	9 10 ³¹	
L tot (cm ⁻² sec ⁻¹)	~ 10 ³⁴	

SRFF at **DA** Φ **NE**

First experimental demonstration of the Strong RF Focusing concept:

- Measuring the bunch length variation along the ring
- Study the single bunch dynamics (effects of the distributed wake on the bunch length)
- ✓ Study the multibunch dynamics and LFB behaviour at very large synchrotron tunes
- ✓ Study of the 3D coupled dynamics
- ✓ Collisions of short bunches (with β_y ~1 cm)
- ✓ Study of CSR

What is needed

- New SC RF cavity with cryostat (to be placed in the FINUDA IR)
- High momentum compaction lattice (feasible with present hardware)
- Criogenic system modification for providing 1.8 K liquid Helium to the RF cavity
- Few days (\approx 10 \div 15) of MD in 2004, 2005
- 2 ÷ 3 months in 2006 for installation of the SC cavity and experimental activity

10m

Parameter List for a Strong RF Focusing Experiment at DAFNE

Momentum Compaction	α_{c}	0.07 - 0.1
RF Frequency	f _{RF}	1288.973 MHz
RF Voltage	V _{RF}	8 - 5.8 MV
Harmonic Number	h	420 (=3.5×120)
Longitudinal Phase Advance	μ _I	120°
Natural Energy Spread	$\left. \frac{\sigma_{_E}}{E} \right _0$	4 • 10 -4
Energy Spread @ μ _l = 120°	$rac{\sigma_{_E}}{E}$	6 • 10 ⁻⁴
Bunch Length	σ _z	1.3 - 2.5 mm 3 - 5.0 mm
RF Acceptance (waist/cavity)	$\left \frac{\Delta E}{E} \right _{\max}$	7 • 10 ⁻³ / 5 • 10 ⁻³

RF Cavity Parameter List

Cavity type		SC TESLA like, 9 cells
RF frequency	f _{RFsc}	1288.973 MHz (-0.85 %)
RF voltage	V _{RF}	7 MV
R/Q geometric factor	R/Q	500 Ω
Quality factor (@ 1.8 K)	Q ₀	1 • 10 ¹⁰
Cavity wall power	P _{cav}	5 W
Loaded quality factor	QL	2 · 10 ⁷
Cavity detuning for Beam Loading	∆f _{RFsc}	- 100 kHz (@ 7MV, lb=1A)
RF generator power	P _{cav}	620 W
Cavity length	L _{cav}	1 m

Mode	f[GHz]	<i>R/Q[Ω]</i>
ΤΜ010-π/7	1.277025	0.0096
ΤΜ010-2π/7	1.280344	1.4445e-5
ΤΜ010-3π/7	1.285180	0.1185
ΤΜ010-4π/7	1.290604	4.3645e-4
ΤΜ010-5π/7	1.295544	1.3952
ΤΜ010-6π/7	1.299009	0.0016
ΤΜ010-π	1.300079	388
PE-1	2.239184	Propagates
PE-2	2.391076	Propagates
PE-3	2.415551	Propagates
PE-4	2.437571	Propagates
PE-5	2.480150	Propagates
PE-6	2.672732	Propagates
PE-7	2.690710	Propagates
PE-8	2.725986	Propagates
PE-9	2.759523	Propagates
PM-1	2.239184	Propagates
PM-2	2.382214	Propagates
PM-3	2.403431	Propagates
PM-4	2.425914	Propagates
PM-5	2.450676	Propagates
PM-6	2.480413	Propagates
PM-7	2.679110	Propagates
PM-8	2.707135	Propagates
PM-9	2.744299	Propagates
PM-10	2.769627	Propagates

MAFIA model of a 7-cells TESLA Cavity with enlarged beam tubes

Table name = TWISS

KLOE now

$$\beta_x^* = 2 m$$

 $\beta_y^* = 2.5 cm$

N _{bunches}	60
βy*	1 cm
β x *	1.5 m
ε _x	1 μ rad
εy	0.005 μ rad
l/beam	< 0.5 A
L	< 10 ³²

ALTERNATIVE PROPOSALS FOR ACHIEVING ULTRA-HIGH LUMINOSITY AT LOW ENERGIES:

Round Beams to increase the linear beam-beam tune shift parameter ξ

View of the VEPP-2000 collider

Experimental testing of RCB should verify predictions on extremely high attainable space charge parameters for the round beams.

Round beam Novosibirsk Φ – Factory: Four wings

Shatunov: if RCB @Vepp2000 : tune shifts >0.1 -> L @phi >10³⁴

Answer in 2005

Luminosity Upgrade @ Φ

	K Physics	Hyper- nuclei	Exotic atoms		
2004	2 10 ³²	10 ³²	10 ³²		
2006	>2 fb ⁻¹	0.5 fb ⁻¹	0.5 fb ⁻¹		
2007	SHUTDOWN				
2008	10 ³³ to 10 ³⁴	10 ³³			
2014	100 fb ⁻¹	>1 fb ⁻¹			
2015	???	???	???		
	KLOE	FINUDA	SIDDHARTA		
Cost (M€)	60 Accelerator				

What's next ?

- 1. No major upgrades Do the best with the existing hardware
- 2. Minimum change for E upgrade (to 1.1 GeV/beam) Preserve operation @ Φ
- 3. New machine for both E upgrade and $L > 10^{33} @ \Phi$
- 4. New machine for L > 10^{34} @ Φ

Increasing Challenge, cost, time, FTE scientific interest The DAFNE Team is willing of starting a new scientific enterprise in collaboration with the High-Energy Physics community