

Simon Eidelman

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Outline

- 1. Why $(g_{\mu} 2)/2?$
- 2. $(g_{\mu} 2)/2$ and $e^+e^- \rightarrow$ hadrons
- 3. $(g_{\mu} 2)/2$ and τ Decays
- 4. Prospects
- 5. Conclusions

S.Eidelman, BINP

Muon Anomalous Magnetic Moment

$$\vec{\mu} = g \frac{e}{2m} \vec{s}, \qquad a = (g - 2)/2.$$

 a_{μ} is measured with a $5 \cdot 10^{-7}$ relative accuracy: G.W. Bennett et al., 2004 $a_{\mu} = (11659208 \pm 6) \cdot 10^{-10}$.

 $a_{\rm e}$ is measured with a $4 \cdot 10^{-9}$ accuracy, but a_{μ} is much more sensitive to new physics effects: the gain is usually $\sim (m_{\mu}/m_{\rm e})^2 \approx 4.3 \cdot 10^4$.

Any significant difference of a_{μ}^{exp} from a_{μ}^{th} indicates new physics beyond the Standard Model.

$$a_{\mu}^{\text{th}} = a_{\mu}^{\text{SM}} + a_{\mu}^{\text{non-SM}}, \qquad a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had}}.$$

QED and EW Contributions to a_{μ}

For the QED term the analytical calculation of the α^3 terms, numerical calculation of the α^4 terms and estimation of some of the α^5 terms gives (V. Hughes and T. Kinoshita, 1999):

$$a_{\mu}^{\text{QED}} = (11658470.6 \pm 0.3) \cdot 10^{-10}.$$

A recent calculation of 469 diagrams of the α^4 terms gave the new value (T. Kinoshita and M. Nio, 2004) for the QED term:

 $a_{\mu}^{\text{QED}} = (11658471.9 \pm 0.2) \cdot 10^{-10}.$

For the EW term the most recent estimation including all one- and two-loop terms as well as part of three-loop terms gives (A. Czarnecki, W.J. Marciano and A. Vainshtein, 2002):

$$a_{\mu}^{\rm EW} = (15.4 \pm 0.1 \pm 0.2) \cdot 10^{-10}.$$

Calculations of $a_{\mu}^{had,LO}$

Authors	Year	$a_{\mu}^{\text{had,LO}}, 10^{-10}$
C.Bouchiat, L.Michel	1961	$\simeq 648$
T.Kinoshita, R.J.Oakes	1967	$\simeq 750$
M.Gourdin, E. de Rafael	1969	650 ± 50
A.Bramon et al.	1972	680 ± 90
V.Barger et al.	1975	660 ± 100
J.Calmet et al.	1977	702 ± 80
T.Kinoshita et al.	1985	$707\ \pm 18$
S.Eidelman, F.Jegerlehner	1995	$702\ \pm 15$
R.Alemany et al.	1998	701.1 ± 9.4
M.Davier, A.Höcker	1998	692.4 ± 6.2

Measurement of R(s)

- $\sqrt{s} < 2 \text{ GeV} \text{exclusive modes}$ $(\pi^+\pi^-, \pi^+\pi^-\pi^0, \dots, K\bar{K}, \dots)$
- Possibly missing (small σ , undetected) final states
- Above 2 GeV total R (all multihadronic events)
- Initial state radiation (ISR), vacuum polarization (VP), final state radiation (FSR): M. Drees, K. Hikasa, 1990

$$\sigma_{\rm bare} = \sigma_{\rm dressed} |1 - \Pi(s)|^2$$

- Experiments: 1974 2000
- Energy range: $0.36 < \sqrt{s} < 1.40$ GeV
- Peak luminosity: $L_{\text{peak}} = 3 \cdot 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$
- Integrated luminosity $\approx 100 \text{ pb}^{-1}$ in Novosibirsk below 1.4 GeV compared to $\approx 6 \text{ pb}^{-1}$ in Orsay and Frascati at $1.4 < \sqrt{s} < 3.0 \text{ GeV}!$

Study of $e^+e^- \rightarrow \pi^+\pi^-$ at CMD-2

This process dominates $a_{\mu}^{\text{had,LO}}$ (~ 73%). CMD-2 analyzed 114k events in the crucial ρ meson region from 600 to 960 MeV. Analysis of the full data sample (more than 1M events) will soon be completed.

Systematic error:

- 1.2% at $\sqrt{s} < 600 \text{ MeV}$
- 0.6% at $600 < \sqrt{s} < 960$ MeV (small sample) and 1% (big sample)
- (1.3-5.0)% at $\sqrt{s} > 1040$ MeV

Large data scatter above 1.4 GeV!

S.Eidelman, BINP

Hadronic Cross Sections at CMD-2

S.Eidelman, BINP

p.11/31

 $\rho-, \omega-, \phi-$ mesons dominate the cross sections. From upper limits on nonresonant cross sections $a_{\mu}^{\text{rad,LO}} < 0.7 \cdot 10^{-10}$.

Measurements at 1.4 GeV $< \sqrt{s} < 2$ GeV

- 5 resonances $(2\rho', 2\omega', \phi')$ with badly known properties
- Mixing of $q\bar{q}$ with hybrids?
- In 2001 E687 (FNAL) observed a narrow dip in $\gamma p \rightarrow 3\pi^+ 3\pi^- p$, M= 1911 $\pm 4 \pm 1$ MeV, $\Gamma = 29 \pm 11 \pm 4$ MeV
- Earlier observed in e^+e^- : DM2 (1988) - $e^+e^- \rightarrow 6\pi$, FENICE (1996) - $e^+e^- \rightarrow$ hadrons
- A hybrid or NN state?

S.Eidelman, BINP

S.Eidelman, BINP

p.15/31

New e^+e^- Data Based Calculation of $a_{\mu}^{had,LO}$

\sqrt{s} , GeV	$a_\mu^{ m had,LO}, 10^{-10}$	$a_{\mu}^{\mathrm{had,LO}},\%$
2π	$508.20 \pm 5.18 \pm 2.74$	72.99
ω	$37.96 \pm 1.02 \pm 0.31$	5.45
ϕ	$35.71 \pm 0.84 \pm 0.20$	5.13
0.6 - 2.0	$63.18 \pm 2.19 \pm 0.86$	9.07
2.0 - 5.0	$33.92 \pm 1.72 \pm 0.03$	4.87
$J/\psi,\psi'$	$7.44 \pm 0.38 \pm 0.00$	1.07
> 5.0	$9.88 \pm 0.11 \pm 0.00$	1.42
Total	$696.3 \pm 6.2 \pm 3.6$	100.0

Higher accuracy of e^+e^- data makes the $a^{had,LO}_{\mu}$ error 2 times smaller!

The contributions of all 3 graphs can be calculated in terms of the $\int R(s)G(s)ds/s^{2(3)}$, where G(s) is a smooth function of s, so that the low energy range again dominates the integral. Several calculations agree. The accepted value is (B. Krause, 1997; R.Alemany, M.Davier, A.Höcker, 1998):

 $a_{\mu}^{\text{had,HO}} = (-10.0 \pm 0.6) \cdot 10^{-10}.$

Light-by-Light Scattering

Various approaches used:

- Vector Dominance and Chiral models
- Data on $\gamma\gamma^* \to \pi^0, \eta, \eta'$ (single-tag)
- Effective field theory approach

M. Knecht and A. Nyffeler, 2002: the correct sign!

Authors	Year	$a_{\mu}^{\rm lbl}, 10^{-10}$
J. Bijnens et al.	1996~(2002)	8.3 ± 3.2
M. Hayakawa and T. Kinoshita	$1998 \ (2002)$	9.0 ± 1.5
Average	2002	8.6 ± 3.5
K. Melnikov and A. Vainshtein	2003	13.6 ± 2.5

Theory vs Experiment (January 2004)

Contribution	$a_{\mu}, 10^{-10}$
Experiment	11659208 ± 6
QED	11658470.6 ± 0.3
Electroweak	$15.4 \pm 0.1 \pm 0.2$
Hadronic	694.9 ± 7.9
Theory	11659180.9 ± 8.0
Exp.–Theory	$27.1 \pm 10.0 \ (2.7\sigma)$

Recent theory progress: $a_{\mu}^{\exp} - a_{\mu}^{\text{th}} = (20.8 \pm 9.7) \cdot 10^{-10} (2.1\sigma)$ How can the theoretical error be improved?

CVC.
$$e^+e^- \to X^0$$
 and $\tau^- \to \nu_\tau X^-$

Allowed $I^G J^P = 1^+ 1^-$: $X^- = \pi^- \pi^0, (4\pi)^-, \omega \pi^-, \eta \pi^- \pi^0, K^- K^0, (6\pi)^-, \dots$ $\frac{d\Gamma}{dq^2} = \frac{G_{\rm F}^2 |V_{\rm ud}|^2 S_{\rm EW}}{32\pi^2 m_{\tau}^3} f_{\rm kin} v_1(q^2) \text{ with}$ $v_1(q^2) = \frac{q^2 \sigma_{e^+e^-}^{\rm I=1}(q^2)}{4\pi\alpha^2}.$

CVC tests showed good agreement of the τ branchings predicted from e^+e^- with τ data (N. Kawamoto and A. Sanda, 1978, F. Gilman and D. Miller, 1978, S. Eidelman and V. Ivanchenko, 1991, 1997).

The very first application of τ data to $a_{\mu}^{\text{had},\text{LO}}$ improved the accuracy by a factor of 1.5 (R. Alemany, M. Davier, A. Höcker, 1998)!

Branchings of $\tau^- \to X^- \nu_\tau$ Decay,%

Hadronic	Experiment,	CVC	
State X	2002	Prediction	$\mathcal{B}_{exp} - \mathcal{B}_{CVC}$
$\pi^{-}\pi^{0}$	25.31 ± 0.18	24.76 ± 0.25	0.55 ± 0.31
$\pi^{-}3\pi^{0}$	1.08 ± 0.10	1.07 ± 0.05	0.01 ± 0.11
$2\pi^{-}\pi^{+}\pi^{0}$	4.19 ± 0.23	3.84 ± 0.17	0.35 ± 0.29
$\omega\pi^{-}$	1.94 ± 0.07	1.82 ± 0.07	0.12 ± 0.10
Total	31.59 ± 0.31	30.28 ± 0.34	1.31 ± 0.46

With more accurate data some deviations have been observed.

$DA\Phi NE2004$

Corrections to the τ Spectral Functions

- $S_{\rm EW} = 1.0233 \pm 0.0006$
- Real photons, loops
- FSR
- $m_{\pi^{\pm}} \neq m_{\pi^{0}}$ (phase space, Γ_{ρ})
- $m_{\rho^{\pm}} \neq m_{\rho^0}$
- $\rho \omega$ interference
- Radiative decays $(\pi\pi\gamma,\pi(\eta)\gamma,l^+l^-)$
- $m_u \neq m_d$ and 2 class currents

Cirigliano, G. Ecker, V. H. Neufeld, 2002 M. Davier, S. Eidelman, Höcker, Z. Zhang, 2002 Α. 1.05 1.04 1.03 Multiplicative correction 1.02 1.01 1 0.99 0.98 $FSR(e^+e^- \rightarrow \pi^+\pi^-)$ 0.97 $\sim (m_{\pi^+} - m_{\pi^0})$ 0.96 combined 0.95 0.5 2.5 0 1.5 2 3 3.5 s (GeV²)

The branching from all groups is systematically higher than the CVC prediction: $\mathcal{B}_{\tau} - \mathcal{B}_{ee} = (0.94 \pm 0.32)\%!$

	Contributions to $a_{\mu}^{\text{had},\text{L}0}$	^O from e^+e^- and τ , 10	-10
Mode	e^+e^-	au	$\Delta(e^+e^ au)$
$\pi^+\pi^-$	$508.20 \pm 5.18 \pm 2.74$	$520.06 \pm 3.36 \pm 2.62$	-11.9 ± 6.9
$\pi^+\pi^-2\pi^0$	$16.76 \pm 1.31 \pm 0.20$	$21.45 \pm 1.33 \pm 0.60$	-4.7 ± 1.8
$2\pi^+2\pi^-$	$14.21 \pm 0.87 \pm 0.23$	$12.35 \pm 0.96 \pm 0.40$	$+1.9\pm2.0$
Total	$539.17 \pm 5.41 \pm 3.17$	$553.86 \pm 3.74 \pm 3.02$	-14.7 ± 7.9

The difference of 1.86σ makes averaging meaningless: a scale factor of 1.82 makes a final error equal to $6.94 \cdot 10^{-10}$ ($7.20 \cdot 10^{-10}$ from e^+e^- only), i.e. no gain at all!

- Problems with data
- Problems with SU(2) breaking corrections
- Non-(V–A) contribution to weak interactions (problems with the $\pi^+ \to e^+ \nu_{
 m e} \gamma$ decay)
- Difference in mass (width) of ρ mesons ($m_{\rho^{\pm}} > m_{\rho^{0}}$ by a few MeV). Current experiments indicate equality within a few MeV.

Recent Calculations of $a_{\mu}^{had,LO}$

Authors	Data	$a_{\mu}^{\text{had,LO}}, \ 10^{-10}$
M. Davier et al.	e^+e^-	$696.3\pm6.2_{\rm exp}\pm3.6_{\rm rad}$
K. Hagiwara et al.	e^+e^-	$692.4\pm5.9_{\rm exp}\pm2.4_{\rm rad}$
S. Ghozzi and F. Jegerlehner	e^+e^-	694.8 ± 8.6
V. Ezhela et al.	e^+e^-	$699.6 \pm 8.5_{\rm exp} \pm 1.9_{\rm rad} \pm 2.0_{\rm proc}$
M. Davier et al.	au	$711.0 \pm 5.0_{\rm exp} \pm 0.8_{\rm rad} \pm 2.8_{\rm SU(2)}$

All e^+e^- based calculations agree!

The e^+e^- and τ based predictions are below the experimental value by 2.7σ (2.1 σ) and 0.7σ , respectively!

Possible Progress for $a_{\mu}^{\text{LO,had}}$

Experiments are planned at the new machine VEPP-2000 (VEPP-2M upgrade) with 2 detectors (CMD-3 and SND) up to $\sqrt{s}=2$ GeV with $L_{\rm max} = 10^{32}$ cm⁻²s⁻¹.

\sqrt{s}, GeV	$a_{\mu}^{\text{LO,had}}$ in 2003 (2007), 10^{-10}	$2003+2007, 10^{-10}$
$2\pi, < 2$	$508.4 \pm 5.5 \; (4.0)$	3.2
ω	$38.0\pm1.1(0.4)$	0.4
ϕ	$35.7\pm0.9(0.4)$	0.3
0.6–2.0	$62.9\pm2.5(1.3)$	1.2
Total	$645.0\pm6.2(4.2)$	3.5

The total error of $a_{\mu}^{\text{had,LO}}$ falls from $7.2 \cdot 10^{-10}$ to $3.9 \cdot 10^{-10}$. Other measurements are welcome (DA Φ NE-II)!

Radiative Return (ISR)

The idea: a photon with E_{γ} energy emitted by initial e^{\pm} allows a study of hadron production at smaller energy: $2E' = 2E\sqrt{1-E_{\gamma}/E}$. A smaller cross section is compensated by a much higher luminosity.

Already today there is a large data sample with small systematic errors: $KLOE - 11k/pb^{-1}$ vs. $360k/pb^{-1}$ with CMD-2, but 1.5M $\pi^{+}\pi^{-}$ events in total! $BaBar - 150 \cdot 10^{3}$ exclusive events between 1 and 3 GeV per 100 fb⁻¹. Belle – starting.

ISR is an independent source of high precision R measurements in the energy range $2m_{\pi} < \sqrt{s} < 3$ GeV, important for a_{μ}^{had} and $\alpha(M_Z^2)$; it also provides an invaluable input for hadronic spectroscopy and QCD.

S.Eidelman, BINP

Future of
$$(g_{\mu} - 2)/2$$

- 1. Experiment
 - Today a_{μ} is known with a $5 \cdot 10^{-7}$ relative accuracy.
 - If funded, the BNL group can reach $2.5 \cdot 10^{-7}$ at BNL and $6 \cdot 10^{-8} 1 \cdot 10^{-7}$ at J-PARC.
- 2. Theory
 - Today: QED, EW $-2.5 \cdot 10^{-8}$, Hadr. LO $-6.7 \cdot 10^{-7}$
 - We'll badly need at least one order of magnitude improvement in the hadronic contribution accuracy
 - It is equivalent to measuring $R(\tau)$ to a 10^{-3} accuracy (???)
 - Or a_{μ}^{had} calculation from 1st principles (QCD, Lattice). Recently from Lattice: $a_{\mu}^{\text{had}} = (446 \pm 23) \cdot 10^{-10}$, $(545 \pm 65) \cdot 10^{-10}$.

Conclusions

- BNL success stimulated significant progress of e^+e^- experiments and related theory
- Improvement of e^+e^- data (VEPP-2M and BEPC) decreased an error of $a_{\mu}^{\text{had,LO}}$ by a factor of 2, but the experimental accuracy of a_{μ} is still better
- τ data could further improve the accuracy by 1.5 but e^+e^- and τ data differ
- Further improvement in $a_{\mu}^{\text{had,LO}}$ by a factor of 2–3 will be possible after VEPP-2000, DA Φ NE-II, CESRc and $(c \tau)$ factory as well as with ISR at DA Φ NE and B-factories
- $a_{\mu}^{\exp} a_{\mu}^{SM}$ differs from 0 by (2.1–2.7) $\sigma \Rightarrow SM$ is still alive!

New Physics and a_{μ}

- Supersymmetry ($\tilde{m} \simeq 200 \text{ GeV-1 TeV}$)
- Cold dark matter and neutralino
- Tachyons $(m^2 < 0)$
- Radiative m_{μ} generation (new scale $\Lambda \simeq 1 2$ TeV)
- Technicolor
- Leptoquarks
- New gauge bosons (Z' etc.)
- Large extra dimensions (M > 600 GeV)
- Lepton flavor violation $(\mu \to e\gamma, \mu \text{ edm}, \tau \to \mu\gamma, ...)$
- $b \rightarrow s\gamma$
- Composite quarks and leptons

S.Eidelman, BINP

p.33/31

Processes with Kaons

- $e^+e^- \rightarrow K^+K^-, K_SK_L$: measurement of branchings, separation of I=0,1
- $e^+e^- \rightarrow K\bar{K}\pi$: 2 of 3 (no $e^+e^- \rightarrow K^0\bar{K}^0\pi^0$), mechanism $(V\pi, K^*K)$
- $e^+e^- \rightarrow K\bar{K}\pi\pi$: $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$ only, total σ 4.5 times bigger?

	Branchings of	of $ au$ Decays into 2 and 4 Pions	
		Branching Ratios, $\%$	
Mode	au data	e^+e^- and CVC	${\cal B}_{ au}-{\cal B}_{ee}$
$ u_{ au}\pi^{-}\pi^{0}$	25.46 ± 0.10	$24.52 \pm \underbrace{0.26_{\exp} \pm 0.11_{rad} \pm 0.12_{SU(2)}}_{0.31}$	$+0.94\pm0.32$
$ u_{\tau}\pi^{-}3\pi^{0}$	1.01 ± 0.08	$1.09 \pm \underbrace{0.06_{\text{exp}} \pm 0.02_{\text{rad}} \pm 0.05_{\text{SU}(2)}}_{0.08}$	-0.08 ± 0.11
$\nu_{\tau} 2\pi^{-} \pi^{+} \pi^{0}$	4.54 ± 0.13	$3.63 \pm \underbrace{0.19_{\exp} \pm 0.04_{rad} \pm 0.09_{SU(2)}}_{0.21}$	$+0.91 \pm 0.25$

The observed excess is 2.94σ for the $\pi^-\pi^0$ and 3.64σ (or 25%) for the $2\pi^-\pi^+\pi^0$ mode! Serious discrepancies are observed.

Higher Order Hadronic Contributions $a_{\mu}^{had,HO}$					
Authors	Year	a	b	С	Total, 10^{-10}
J.Calmet et al.	1976	11.0 ± 1.4	-20.7 ± 3.0	0.2 ± 0.1	-9.5 ± 3.2
T.Kinoshita et al.	1985	10.7 ± 0.3	-19.9 ± 0.4	0.2 ± 0.1	-9.0 ± 0.5
B.Krause	1997	10.7 ± 0.2	-21.1 ± 0.5	0.3 ± 0.1	-10.1 ± 0.6
R.Alemany et al.	1998	10.6 ± 0.2	-20.9 ± 0.4	0.3 ± 0.1	-10.0 ± 0.6

$DA\Phi NE2004$

