Dalitz plot analysis in

Laura Edera

Universita' degli
Studi di Milano

DAФNE 2004

Physics at meson factories

June 7-11, 2004
INFN Laboratory,
Frascati, Italy

The high statistics and excellent quality of charm data now available allow for unprecedented sensitivity \& sophisticated studies:

- lifetime measurements @ better than 1\%
- CPV, mixing and rare\&forbidden decays
- investigation of 3-body decay dynamics: Dalitz plot analysis
- Phases and Quantum Mechanics interference: FSI
- CP violation probe Focus $\mathrm{D}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}$(ICHEP 2002), Cleo $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-}$
but decay amplitude parametrization problems arise

Complication for charm Dalitz plot analysis

Focus had to face the problem of dealing with light scalar particles populating charm meson hadronic decays, such as $\mathbf{D} \rightarrow \pi \pi \pi, \mathbf{D} \rightarrow \mathrm{K} \pi \pi$ including $\sigma(600)$ and $\kappa(900)$, (i.e, $\pi \pi$ and $\mathrm{K} \pi$ states produced close to threshold), whose existence and nature is still controversial

$\mathrm{D} \rightarrow \mathrm{r}+3$

Amplitude parametrization

The problem is to write the propagator for the resonance r

For a well-defined wave with specific isospin and spin (IJ) characterized by narrow and well-isolated resonances, we know how:

The isobar model

$$
A=F_{D} F_{r} \times\left|\vec{p}_{1}\right|^{J}\left|\vec{p}_{3}\right|^{J} P_{J}\left(\cos \vartheta_{13}^{r}\right) \times B W\left(m_{12}^{2}\right)
$$

$$
\begin{array}{ll}
\text { Where } & \left.\begin{array}{l}
F=1 \\
F=\left(1+R^{2} p^{2}\right)^{-1 / 2} \\
F=\left(9+3 R^{2} p^{2}+3 R^{4} p^{4}\right)^{-1 / 2}
\end{array}\right\} \\
\text { and } \quad & B W(12 \mid r)=\frac{1}{M_{r}^{2}-m_{12}^{2}-i \Gamma M_{r}} \quad \begin{array}{l}
\text { Spin 0 } \\
\text { Spin 1 } \\
\text { Spin 2 }
\end{array}\left\{\begin{array}{l}
P_{J}=1 \\
P_{J}=\left(-2 \vec{p}_{3} \cdot \vec{p}_{1}\right) \\
P_{J}=2\left(p_{3} p_{1}\right)^{2}\left(3 \cos ^{2} \vartheta_{13}-1\right)
\end{array}\right. \\
\end{array}
$$

$$
\underset{\text { fraction }}{\text { fit }} \mathrm{f}_{\mathrm{r}}=\frac{\int\left|a_{\mathrm{r}} e^{i \delta_{\mathrm{r}}} \mathrm{~A}_{\mathrm{r}}\right|^{2} \mathrm{dm}_{12}^{2} \mathrm{dm}_{13}^{2}}{\int\left|\sum_{\mathrm{j}} a_{\mathrm{j}} e^{\mathrm{i} \delta_{\mathrm{j}}} \mathrm{~A}_{\mathrm{j}}\right|^{2} \mathrm{dm}_{12}^{2} \mathrm{dm}_{13}^{2}}
$$

traditionally applied to charm decays

In contrast

when the specific IJ-wave is characterized by large and heavily overlapping resonances (just as the scalars!), the problem is not that simple.

Indeed, it is very easy to realize that the propagation is no longer dominated by a single resonance but is the result of a complicated interplay among resonances.

In this case, it can be demonstrated on very general grounds that the propagator may be written in the context of the K-matrix approach as

$$
(I-i K \cdot \rho)^{-1}
$$

where K is the matrix for the scattering of particles 1 and 2 .

$$
\sqrt{ }
$$

i.e., to write down the propagator we need the scattering matrix

K-matrix formalism

$$
S=I+2 i T
$$

T transition matrix
K-matrix is defined as: $\quad K^{-1}=T^{-1}+i \rho \quad$ i. e. $\quad T=(I-i K \rho)^{-1} K$

Add two BW ala Isobar model

Adding BW violates unitarity

Add two K matrices

$$
\begin{aligned}
& \text { Adding K matrices } \\
& \text { respects unitarity }
\end{aligned}
$$

pioneering work by Focus

Dalitz plot analysis of D^{+}and $\mathrm{D}^{+}{ }_{s} \rightarrow \pi^{+} \pi^{-} \pi^{+}$

Phys. Lett. B 585 (2004) 200
first attempt to fit charm data
with the K-matrix formalism

"K-matrix analysis of the 00^{++}-wave in the mass region below $1900 \mathrm{MeV}^{\prime \prime}$
V.V Anisovich and A.V.Sarantsev Eur. Phys.J.A16 (2003) 229

$$
P_{i}=\sum_{\alpha} \frac{\left.\beta_{\alpha}\right) \gamma_{i \alpha} m_{\alpha} \Gamma_{\alpha}}{m_{\substack{2 \\ \text { carries the production information } \\ \text { COMPLEX }}}^{m_{c}^{2} m^{2}}+d_{i}\left(m^{2}\right)}
$$

ENL	$\pi^{-} \mathrm{p} \rightarrow \mathrm{K} \overline{\mathrm{K}} \mathrm{n}$
CERN-Münich	$\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$
Crystal Barrel	$\mathrm{p} \overline{\mathrm{p}} \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \eta$
Crystal Barrel	$\mathrm{p} \overline{\mathrm{p}} \rightarrow \pi^{+} \pi^{-} \pi^{0}, \mathrm{~K}^{+} \mathrm{K}^{-} \pi^{0}$,
etc...	$\mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}} \pi^{0}, \mathrm{~K}^{+} \mathrm{K}_{\mathrm{s}} \pi^{-}$

$\mathbf{D}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$

> Yield $D^{+}=1527 \pm 51$ S/N D $D^{+}=3.64$

K-matrix fit results

Decay fractions

$\begin{array}{ll}\text { (S-wave) } \pi^{+} & (56.00 \pm 3.24 \pm 2.08) \% \\ \mathrm{f}_{2}(1275) \pi^{+} & (11.74 \pm 1.90 \pm 0.23) \% \\ \rho(770) \pi^{+} & (30.82 \pm 3.14 \pm 2.29) \%\end{array}$

Phases

0 (fixed)
$(-47.5 \pm 18.7 \pm 11.7)^{\circ}$
$(-139.4 \pm 16.5 \pm 9.9)^{\circ}$

No new ingredient (resonance) required not present in the scattering!

$$
\begin{aligned}
& \mathrm{m}=442.6 \pm 27.0 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma=340.4 \pm 65.5 \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

With σ

$$
\mathbf{D}_{\mathbf{s}}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}
$$

Yield $D_{s}{ }^{+}=1475 \pm 50$

K-matrix fit results

Decay fractions

(S-wave) π^{+}
$(87.04 \pm 5.60 \pm 4.17) \%$
Phases
$\mathrm{f}_{2}(1275) \pi^{+}$
$(9.74 \pm 4.49 \pm 2.63) \%$
0 (fixed)
$(168.0 \pm 18.7 \pm 2.5)^{\circ}$
$\rho(1450) \pi^{+}$
$(6.56 \pm 3.43 \pm 3.31) \%$
$(234.9 \pm 19.5 \pm 13.3)^{\circ}$

from $\mathrm{D}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$to $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}$

from $\pi \pi$ wave to $\mathrm{K} \pi$ wave

from $\sigma(600)$ to $\kappa(900)$

from 1500 events to more than 50000!!!

Isobar analysis of $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}$would require an ad hoc scalar meson: $\kappa(900)$

First attempt to fit the $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}$in the K -matrix approach

a lot of work to be performed!!
a "real" test of the method (high statistics)...
in progress...

The excellent statistics allow for investigation of suppressed and even heavily suppressed modes

Doubly Cabibbo Suppressed

$\mathbf{D}^{+} \rightarrow \mathbf{K}^{+} \pi^{+} \pi^{-}$

Yield $D^{+}=189 \pm 24$ S/N D ${ }^{+}=1.0$

Singly Cabibbo Suppressed

$\mathrm{D}_{\mathrm{s}}{ }^{+} \rightarrow \mathrm{K}^{+} \pi^{+} \pi^{-}$

Yield $\mathrm{D}_{\mathrm{s}}{ }^{+}=567 \pm 31$ $\mathrm{S} / \mathrm{ND}_{\mathrm{s}}{ }^{+}=2.4$
$\pi \pi \& \mathrm{~K} \pi$ s-waves are necessary...

$\mathrm{D}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$

$$
\mathrm{D}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}
$$

Decay fractions

$$
\begin{aligned}
& \mathrm{K}^{*}(892)=(52.2 \pm 6.8 \pm 6.4) \% \\
& \rho(770)=(39.4 \pm 7.9 \pm 8.2) \% \\
& \mathrm{~K}_{2}(1430)=(8.0 \pm 3.7 \pm 3.9) \% \\
& \mathrm{f}_{0}(980)=(8.9 \pm 3.3 \pm 4.1) \%
\end{aligned}
$$

Coefficients
$1.15 \pm 0.17 \pm 0.16$
1 fixed
$0.45 \pm 0.13 \pm 0.13$
$0.48 \pm 0.11 \pm 0.14$

Phases
$(-167 \pm 14 \pm 23)^{\circ}$
(0 fixed)
(54 $\pm 38 \pm 21)^{\circ}$
$(-135 \pm 31 \pm 42)^{\circ}$

$\mathrm{D}_{\mathrm{s}}{ }^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$

$$
\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}
$$

First Dalitz analysis

Decay fractions

$$
\begin{aligned}
& \rho(770)=(38.8 \pm 5.3 \pm 2.6) \% \\
& \mathrm{~K}^{*}(892)=(21.6 \pm 3.2 \pm 1.1) \% \\
& \mathrm{NR} \quad=(15.9 \pm 4.9 \pm 1.5) \% \\
& \mathrm{~K}^{*}(1410)=(18.8 \pm 4.0 \pm 1.2) \% \\
& \mathrm{~K}^{*}{ }_{0}(1430)=(7.7 \pm 5.0 \pm 1.7) \% \\
& \rho(1450)=(10.6 \pm 3.5 \pm 1.0) \%
\end{aligned}
$$

coefficients
1 fixed
$0.75 \pm 0.08 \pm 0.03$
$0.64 \pm 0.12 \pm 0.03$
$0.70 \pm 0.10 \pm 0.03$
$0.44 \pm 0.14 \pm 0.06$
$0.52 \pm 0.09 \pm 0.02$

Phases
(0 fixed)
$(162 \pm 9 \pm 2)^{\circ}$
$(43 \pm 10 \pm 4)^{\circ}$
$(-35 \pm 12 \pm 4)^{\circ}$
$(59 \pm 20 \pm 13)^{\circ}$
$(-152 \pm 11 \pm 4)^{\circ}$

Conclusions

- Dalitz analysis \Rightarrow interesting and promising results
- Focus has carried out a pioneering work!

The K-matrix approach has been applied to charm decay for the first time
The results are extremaly encouraging since the same parametrization of two-body $\pi \pi$ resonances coming from light-quark experiments works for charm decays too

- Cabibbo suppressed channels started to be analyzed now easy (isobar model), complications for the future ($\pi \pi$ and $\mathrm{K} \pi$ waves)
- What we have just learnt will be crucial at higher charm statistics and for future beauty studies, such as $B \rightarrow \rho \pi$

slides for possible questions...

K-matrix formalism

Resonances are associated with poles of the S-matrix

$$
S=I+2 i T
$$

T transition matrix

$\gamma_{\mathrm{ia}}=$ coupling constant to channel i
$\mathrm{m}_{\mathrm{a}}=\mathrm{K}$-matrix mass
$\Gamma_{\mathrm{a}}=$ K-matrix width
from scattering to production (from T to F):
carries the production information

$$
P_{i}=\sum_{\alpha} \frac{\left.\beta_{\alpha}\right) \zeta_{i \alpha} m_{\alpha} \Gamma_{\alpha}}{m_{\alpha}^{2}-m^{2}}+d_{i}\left(m^{2}\right) \quad F=(I-i K \rho)^{-1} P
$$

production vector

I.J.R. Aitchison
Nucl. Phys. A189 (1972) 514

$$
T=(I-i K \rho)^{-1} K
$$

carries the production information COMPLEX

$$
F=(I-i K \rho)^{-1} P
$$

$$
P_{i}=\sum_{\alpha} \frac{\beta_{\alpha} \gamma_{i \alpha} m_{\alpha} \Gamma_{\alpha}}{m_{\alpha}^{2}-m^{2}}+d_{i}\left(m^{2}\right)
$$

production vector

$$
\begin{gathered}
\underset{\mathrm{tatal}}{\text { total }} \\
\text { amplitude }
\end{gathered} \quad \mathcal{M}=a_{0} e^{i \vartheta_{0}}+F+\sum_{\mathrm{j}} a_{\mathrm{j}} e^{i \vartheta_{\mathrm{j}}} B \underset{\sim}{W} \quad \begin{gathered}
\text { vector and } \\
\text { tensor } \\
\text { contributions }
\end{gathered}
$$

Only in a few cases the description through a simple BW is satisfactory.

- If $m_{0}=m_{a}=m_{b}$

$$
K=\frac{\gamma_{a}^{2} m_{a} \Gamma_{a}}{m_{a}^{2}-m^{2}}+\frac{\gamma_{b}^{2} m_{b} \Gamma_{b}}{m_{b}^{2}-m^{2}} \quad \square T=\frac{m_{0}\left[\Gamma_{a}(m)+\Gamma_{b}(m)\right]}{m_{0}^{2}-m^{2}-i m_{0}\left[\Gamma_{a}(m)+\Gamma_{b}(m)\right]}
$$

The results is a single BW form where $\Gamma=\Gamma_{a}+\Gamma_{b}$

The observed width is the sum of the two individual widths

- If m_{a} and m_{b} are far apart relative to the widths (no overlapping)

$$
T \simeq\left[\frac{m_{a} \Gamma_{a}^{0}}{m_{a}^{2}-m^{2}-i m_{a} \Gamma_{a}(m)}\right]\left[\left(\frac{m_{a}}{m}\right)\left(\frac{q}{q_{a}}\right)\right]+\left[\frac{m_{b} \Gamma_{b}^{0}}{m_{b}^{2}-m^{2}-i m_{b} \Gamma_{b}(m)}\right]\left[\left(\frac{m_{b}}{m}\right)\left(\frac{q}{q_{b}}\right)\right]
$$

The transition amplitude is given merely by the sum of 2 BW

The K-matrix formalism gives us the correct tool to deal with the nearby resonances
e.g. 2 poles $\left(f_{0}(1370)-f_{0}(1500)\right)$ coupled to 2 channels ($\pi \pi$ and KK)
$K_{i j}=\frac{\gamma_{a i} \gamma_{a j} m_{a} \Gamma_{a}}{m_{a}{ }^{2}-m^{2}}+\frac{\gamma_{b i} \gamma_{b j} m_{b} \Gamma_{b}}{m_{b}{ }^{2}-m^{2}}$

$$
P_{i}=\frac{\beta_{a} \gamma_{a i} m_{a} \Gamma_{a}}{m_{a}^{2}-m^{2}}+\frac{\beta_{b} \gamma_{b i} m_{b} \Gamma_{b}}{m_{b}^{2}-m^{2}}
$$

total amplitude
$F_{i}=\frac{\beta_{a} m_{a} \Gamma_{a} \gamma_{a 1}\left(m_{b}^{2}-m^{2}\right)+\beta_{b} m_{b} \Gamma_{b} \gamma_{b 1}\left(m_{a}^{2}-m^{2}\right)-i m_{a} \Gamma_{a} m_{b} \Gamma_{b} \rho_{2}\left(\gamma_{a 2} \beta_{b}-\beta_{a} \gamma_{b 2}\right)\left(\gamma_{a 2} \gamma_{b 1}-\gamma_{a 1} \gamma_{b 2}\right)}{\left(m_{a}^{2}-m^{2}\right)\left(m_{b}^{2}-m^{2}\right)-i m_{a} \Gamma_{a}\left(\gamma_{a 1}^{2} \rho_{1}+\gamma_{a 2}^{2} \rho_{2}\right)\left(m_{b}^{2}-m^{2}\right)-i m_{b} \Gamma_{b}\left(\gamma_{b 1}^{2} \rho_{1}+\gamma_{b 2}^{2} \rho_{2}\right)\left(m_{a}^{2}-m^{2}\right)-m_{a} \Gamma_{a} m_{b} \Gamma_{b} \rho_{1} \rho_{2}\left(\gamma_{a 2} \gamma_{b 1}-\gamma_{a 1} \gamma_{b 2}\right)^{2}}$
if you treat the $2 \mathrm{f}_{0}$ scalars as 2 independent BW:

$$
F_{i}=\frac{\beta_{a} \gamma_{a i} m_{a} \Gamma_{a}}{m_{a}^{2}-m^{2}-i m_{a} \Gamma_{a}\left(\gamma_{a 1}^{2} \rho_{1}+\gamma_{a 2}^{2} \rho_{2}\right)}+\frac{\beta_{b} \gamma_{b i} m_{b} \Gamma_{b}}{m_{b}^{2}-m^{2}-i m_{b} \Gamma_{b}\left(\gamma_{b 1}^{2} \rho_{1}+\gamma_{b 2}^{2} \rho_{2}\right)}
$$

no 'mixing' terms!
the unitarity is not respected!
$I J^{P C}=00^{+ \pm}$wave has been reconstructed on the basis of a complete available data set

Scattering amplitude:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{ab}}^{\mathrm{IJ}} \text { is a } 5 \times 5 \text { matrix }(\mathrm{a}, \mathrm{~b}=1,2,3,4,5) \\
& \begin{array}{l}
1=\pi \pi \quad 2=\mathrm{K} \overline{\mathrm{~K}} \\
3
\end{array}=\eta \eta \quad 4=\eta \eta \\
& 5=\text { multimeson states }(4 \pi)
\end{aligned}
$$

$$
K_{i j}^{00}(s)=\left(\sum_{\alpha} \frac{g_{i}^{(\alpha)} g_{j}^{(\alpha)}}{M_{\alpha}^{2}-s}+f_{i j}^{\text {scatt }} \frac{1 G e V^{2}-s_{0}^{\text {scatt }}}{s-s_{0}^{\text {scatt }}}\right) \frac{s-s_{A} m_{\pi}^{2} / 2}{\left(s-s_{A 0}\right)\left(1-s_{A 0}\right)}
$$

$g_{i}{ }^{(\alpha)}$ is the coupling constant of the bare state α to the meson channel $\quad g_{i}{ }^{(\alpha)}(m)=\sqrt{m_{\alpha} \Gamma_{i}^{(\alpha)}(m)}$
$f_{i j}^{\text {scatt }}$ and $s_{0}^{\text {scatt }}$ describe a smooth part of the K-matrix elements
$\left(s-s_{A} m_{\pi}^{2} / 2\right) /\left(s-s_{A 0}\right)\left(1-s_{A 0}\right)$ suppresses false kinematical singularity at $s=0$ near $\pi \pi$ threshold

Production of resonances:

$$
P_{j}=\left(\sum_{\alpha} \frac{\left(\beta_{\alpha}\right) g_{j}^{(\alpha)}}{M_{\alpha}^{2}{ }_{\alpha}-s}+f_{b c k} \frac{1 G e V^{2}-s_{0}^{\text {prod }}}{s-s_{0}^{\text {prod }}}\right) \frac{s-s_{A} m_{\pi}^{2} / 2}{\left(s-s_{A 0}\right)\left(1-s_{A 0}\right)}
$$

fit parameters

A description of the scattering ...

A global fit to all the available data has been performed!

"K-matrix analysis of the $\mathbf{0 0 + +}$-wave in the mass region below $1900 \mathrm{MeV}^{\prime}$ "
V.V Anisovich and A.V.Sarantsev Eur.Phys.J.A16 (2003) 229

*	GAMS
*	GAMS
*	BNL
*	CERN-Munich
*	Crystal Barrel
*	E852

$$
\begin{aligned}
& \pi \mathbf{p} \rightarrow \pi^{0} \pi^{0} \mathbf{n}, \eta \eta \mathbf{n}, \eta \eta^{\prime} \mathbf{n},|\mathrm{t}|<\mathbf{0 . 2}\left(\mathbf{G e V} / \mathbf{c}^{2}\right) \\
& \pi p \rightarrow \pi^{0} \pi^{0} \mathrm{n}, 0.30<|\mathrm{t}|<1.0\left(\mathrm{GeV} / \mathrm{c}^{2}\right) \\
& \pi \mathbf{p}^{-} \rightarrow \mathbf{K K n} \\
& \pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-} \\
& \mathbf{p} \overline{\mathbf{p}} \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \eta, \pi^{0} \eta \eta \\
& \overline{\mathbf{p}} \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \eta \\
& \mathbf{p} \overline{\mathbf{p}} \rightarrow \pi^{+} \pi^{-} \pi^{0}, \mathbf{K}^{+} \mathbf{K} \cdot \pi^{0}, \mathbf{K}_{s} \mathbf{K}_{s} \pi^{0}, \mathbf{K}^{+} \mathbf{K}_{s} \pi^{-} \\
& \mathbf{n \mathbf { p }} \rightarrow \pi^{0} \pi^{0} \pi^{-}, \pi^{-} \pi^{-} \pi^{+}, \mathbf{K}_{s} \mathbf{K}^{-} \pi^{0}, \mathbf{K}_{s} \mathbf{K}_{s} \pi^{-} \\
& \pi \mathrm{p} \rightarrow \pi^{0} \pi^{0} \mathrm{n}, 0<|\mathrm{t}|<1.5\left(\mathrm{GeV} / \mathbf{c}^{2}\right)
\end{aligned}
$$

At rest, from liquid H_{2}
At rest, from gaseous H_{2}
At rest, from liquid H_{2}
At rest, from liquid $\quad D_{2}$

A\&S K-matrix poles, couplings etc.

Poles	$g_{\pi \pi}$	$g_{K K}$	$g_{4 \pi}$	$g_{\eta \eta}$	$g_{\eta \eta^{\prime}}$
0.65100	0.24844	-0.52523	0	-0.38878	-0.36397
1.20720	0.91779	0.55427	0	0.38705	0.29448
1.56122	0.37024	0.23591	0.62605	0.18409	0.18923
1.21257	0.34501	0.39642	0.97644	0.19746	0.00357
1.81746	0.15770	-0.17915	-0.90100	-0.00931	0.20689
$s_{0}^{\text {scatt }}$	$f_{11}^{\text {scatt }}$	$f_{12}^{\text {scatt }}$	$f_{13}^{\text {scatt }}$	$f_{14}^{\text {scatt }}$	$f_{15}^{\text {scatt }}$
-3.30564	0.26681	0.16583	-0.19840	0.32808	0.31193
s_{A}	$s_{A 0}$				
1.0	-0.2				

A\&S T-matrix poles and couplings

($m, \Gamma / 2$)	$g_{\pi t}$	$g_{\text {KK }}$	$g_{4 \pi}$	g_{m}	$g_{n t}$
(1.019, 0.038)	$0.415 e^{i 3}$	$0.580 e^{i}$	$0.1482 e^{i}$	$0.484 e^{i 88}$	$0.401 e^{i 11}$
(1.306, 0.167)	$0.406 e^{i 1168}$	$0.105 e^{i 1002}$	$0.8912 e^{-6619}$	$0.142 e^{i 41400}$	$0.225 e^{i 1330}$
(1.470, 0.960)	$0.758 e^{\text {i97.8 }}$	$0.844 e^{\text {i974 }}$	$1.681 e^{i 9.1 .1}$	$0.431 e^{i 1155}$	$0.175 e^{i 1124}$
(1.489, 0.058)	$0.246 e^{i(1515}$	$0.134 e^{i 4996}$	$0.4867 e^{-i 1233}$	$0.100 e^{-i(10.6}$	$0.115 e^{-i 1339}$
(1.749, 0.165)	$0.536 e^{i 10}$	$0.072 e^{1,1342}$	$0.7334 e^{-i}$	$0.160 e^{i}$	313 e

A\&S fit does not need a σ as measured in the isobar fit

D_{s} production coupling constants

$\mathrm{f}-0(980)$	$(1.019,0.038)$	$1 \mathrm{e}^{\wedge}\{\mathrm{i} 0\}$ (fixed)
f_0(1300)	$(1.306,0.170)$	$(0.43 \backslash \mathrm{pm} 0.04) \mathrm{e}^{\wedge}\{\mathrm{i}(-163.8 \backslash \mathrm{pm} 4.9)\}$
$\mathrm{f}-0(1200-1600)$	$(1.470,0.960)$	$\left(4.90 \backslash \mathrm{pm} \mathrm{0.08)} \mathrm{e}^{\wedge}\{\mathrm{i}(80.9 \backslash \mathrm{pm} 1.06)\}\right.$
f_0(1500)	$(1.488,0.058)$	$(0.51 \backslash \mathrm{pm} 0.02) \mathrm{e}^{\wedge}\{\mathrm{i}(83.1 \backslash \mathrm{pm} 3.03)\}$
f_0(1750)	$(1.746,0.160)$	$(0.82 \backslash \mathrm{pm} 0.02) \mathrm{e}^{\wedge}\{\mathrm{i}(-127.9 \backslash \mathrm{pm} 2.25)\}$

D^{+}production coupling constants

f_0(980)	(1.019,0.038)	$1 \mathrm{e}^{\wedge}\{\mathrm{i} 0\}$ (fixed)
f_0(1300)	(1.306,0.170)	$(0.67 \backslash \mathrm{pm} 0.03) \mathrm{e}^{\wedge}\{\mathrm{i}(-67.9 \backslash \mathrm{pm} \mathrm{3.0)}\}$
f_0(1200-1600)	(1.470,0.960)	$(1.70 \backslash \mathrm{pm} 0.17) \mathrm{e}^{\wedge}\{\mathrm{i}(-125.5 \backslash \mathrm{pm} \mathrm{1.7)}\}$
f_0(1500)	$(1.489,0.058)$	$(0.63 \backslash \mathrm{pm} 0.02) \mathrm{e}^{\wedge}\{\mathrm{i}(-142.2 \backslash \mathrm{pm} \mathrm{2.2)}\}$
f_0(1750)	(1.746,0.160)	$(0.36 \backslash \mathrm{pm} 0.02) \mathrm{e}^{\wedge}\{\mathrm{i}(-135.0 \backslash \mathrm{pm} 2.9)\}$

The Q-vector approach

- We can view the decay as consisting of an initial production of the five virtual states $\pi \pi, \mathrm{K} \overline{\mathrm{K}}$,
$\eta \eta, \eta \eta^{\prime}$ and 4π, which then scatter via the physical T-matrix into the final state.

$$
\begin{aligned}
& F=(I-i K \rho)^{-1} P=(I-i K \rho)^{-1} K K^{-1} P=T K^{-1} P=T Q \\
& \text { The Q-vector contains the production amplitude } \\
& \text { of each virtual channel in the decay }
\end{aligned}
$$

The resulting picture

- The S-wave decay amplitude primarily arises from a ss contribution.
- For the D^{+}the $\overline{\mathrm{ss}}$ contribution competes with a dd contribution.
- Rather than coupling to an S-wave dipion, the d \bar{d} piece prefers to couple to a vector state like $\rho(770)$, that alone accounts for about 30% of the D^{+}decay.
- This interpretation also bears on the role of the annihilation diagram in the $\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$decay:
- the S-wave annihilation contribution is negligible over much of the dipion mass spectrum. It might be interesting to search for annihilation contributions in higher spin channels, such as $\rho^{0}(1450) \pi$ and $f_{2}(1270) \pi$.

CP violation on the Dalitz plot

- For a two-body decay

$$
\begin{array}{r}
\mathbf{A}_{\text {tot }}=g_{1} \mathrm{M}_{1} \mathrm{e}^{\mathrm{i} \delta_{1}}+\mathrm{g}_{2} \mathrm{M}_{2} \mathrm{e}^{\mathrm{i} \delta_{2}} \\
\\
\overline{\mathrm{~A}}_{\text {tot }}=\mathrm{g}_{1}^{*} \mathrm{M}_{1} \mathrm{e}^{\mathrm{i} \delta_{1}}+\mathrm{g}_{2}^{*} \mathrm{M}_{2} \mathrm{e}^{\mathrm{i} \delta_{2}}
\end{array} \quad \delta_{\mathrm{i}}=\text { stronjugate phase }
$$

CP asymmetry:

$$
\mathbf{a}_{\mathbf{C P}}=\frac{\left|\mathbf{A}_{\text {tot }}\right|^{2}-\left|\overline{\mathbf{A}_{\text {tot }}}\right|^{2}}{\left|\mathbf{A}_{\text {tot }}\right|^{2}+\left|\overline{\mathbf{A}_{\text {tot }}}\right|^{2}}=\frac{2 \operatorname{Im}\left(g_{2} g_{1}{ }^{*}\right) \sin \left(\delta_{1}-\delta_{2}\right) \mathbf{M}_{1} \mathbf{M}_{2}}{\left|\mathbf{g}_{1}\right|^{2} \mathbf{M}_{1}{ }^{2}+\left|\mathbf{g}_{2}\right|^{2} \mathbf{M}_{2}{ }^{2}+2 \operatorname{Re}\left(g_{2} g_{1}{ }^{*}\right) \cos \left(\delta_{1}-\delta_{2}\right) \mathbf{M}_{1} \mathbf{M}_{2}}
$$

2 different amplitudes
strong phase-shift

CP violation \& Dalitz analysis

Dalitz plot = FULL OBSERVATION of the decay

n

COEFFICIENTS and PHASES for each amplitude
Measured phase:

$$
\theta=\delta+\phi
$$

$\begin{array}{ll}\text { CP conserving } \\ \text { CP conjugate } & \bar{\delta}=\delta \quad \bar{\phi}=-\phi\end{array}$
$\mathbf{E 8 3 1} \rightarrow \begin{aligned} & \text { Measure of direct CP violation: } \\ & \text { asymmetrys in decay rates of } \mathbf{D}^{ \pm} \rightarrow \mathbf{K}^{\ddagger} \mathbf{K} \pi^{ \pm}\end{aligned} \quad \mathbf{a}_{\mathbf{C P}}=\mathbf{0 . 0 0 6} \pm \mathbf{0 . 0 1 1} \pm \mathbf{0 . 0 0 5}$
-No significant direct three-bodydecay component

- No significant $\rho(770) \pi$ contribution

Marginal role of annihilation in charm hadronic decays
But need more data!

