DADNE 2004: Physics at Meson Factories # $K \rightarrow 3\pi$ Decays in Chiral Perturbation Theory Fredrik Borg Theoretical High Energy Physics Lund University #### Introduction to χPT Aim: To study the physics of hadrons (K, π, η) at low energies (few hundred MeV). Fundamental Theory: QCD Problem: Low-energy QCD is non-perturbative, ie. we can't use it to get results. Solution: Build an Effective Theory. Effective Lagrangian with the properties: - Spontaneously broken Chiral symmetry. - Relevant fields: K, π, η . #### Relevant processes: $$K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}$$ $$K^{\pm} \to \pi^{\pm} \pi^{\pm} \pi^{\mp}$$ $$K_{L} \to \pi^{+} \pi^{-} \pi^{0}$$ $$K_{L} \to \pi^{0} \pi^{0} \pi^{0}$$ $$K_{S} \to \pi^{+} \pi^{-} \pi^{0}$$ ## Isospin limit: Treating the up- and down-quark as being identical. - 1. Does χ PT agree with data? - 2. For which values of the free parameters? - 3. Conclusions? Lowest order (p^2) diagrams: One-loop order (p^4) , 13 new topologies. - \square p^2 weak vertex - $\boxtimes p^4 \text{ weak vertex}$ #### More complicated: - \square p^2 weak vertex - \bigcirc p^2 strong vertex #### **Conclusions** • $K \to 3\pi$ tree-level agrees with various published expressions. #### Numerical results: - \bullet Fitted χPT parameters reproduce decaywidths and linear slopes. - Quadratic slopes more difficult. Higher order corrections or isospin breaking effects? #### Next step • Include isospin violations in the amplitudes. # $K \rightarrow 3\pi$ with isospin breaking ## Strong isospin breaking: $m_u \neq m_d \Rightarrow \mathsf{Mixing} \; \mathsf{between} \; \eta \; \mathsf{and} \; \pi^0.$ #### Electromagnetic isospin breaking: EM charges of the quarks \Rightarrow 40 new topologies.