
DADNE 2004: Physics at Meson Factories

$K \rightarrow 3\pi$ Decays in Chiral Perturbation Theory

Fredrik Borg

Theoretical High Energy Physics Lund University

Introduction to χPT

Aim: To study the physics of hadrons (K, π, η) at low energies (few hundred MeV).

Fundamental Theory: QCD

Problem: Low-energy QCD is non-perturbative, ie. we can't use it to get results.

Solution: Build an Effective Theory.

Effective Lagrangian with the properties:

- Spontaneously broken Chiral symmetry.
- Relevant fields: K, π, η .

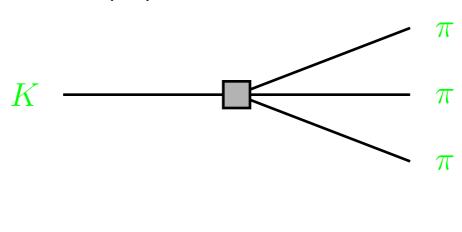
Relevant processes:

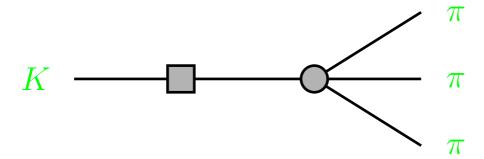
$$K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}$$

$$K^{\pm} \to \pi^{\pm} \pi^{\pm} \pi^{\mp}$$

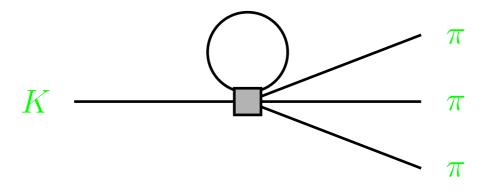
$$K_{L} \to \pi^{+} \pi^{-} \pi^{0}$$

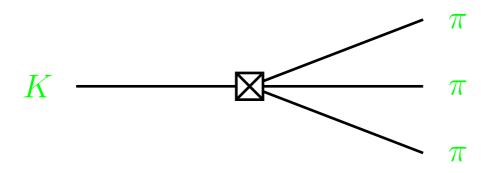
$$K_{L} \to \pi^{0} \pi^{0} \pi^{0}$$

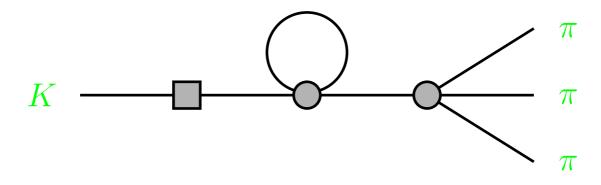

$$K_{S} \to \pi^{+} \pi^{-} \pi^{0}$$

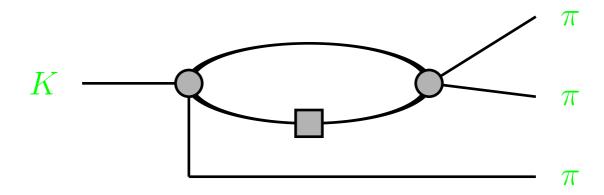

Isospin limit:

Treating the up- and down-quark as being identical.


- 1. Does χ PT agree with data?
- 2. For which values of the free parameters?
- 3. Conclusions?


Lowest order (p^2) diagrams:


One-loop order (p^4) , 13 new topologies.



- \square p^2 weak vertex
- $\boxtimes p^4 \text{ weak vertex}$

More complicated:

- \square p^2 weak vertex
- \bigcirc p^2 strong vertex

Conclusions

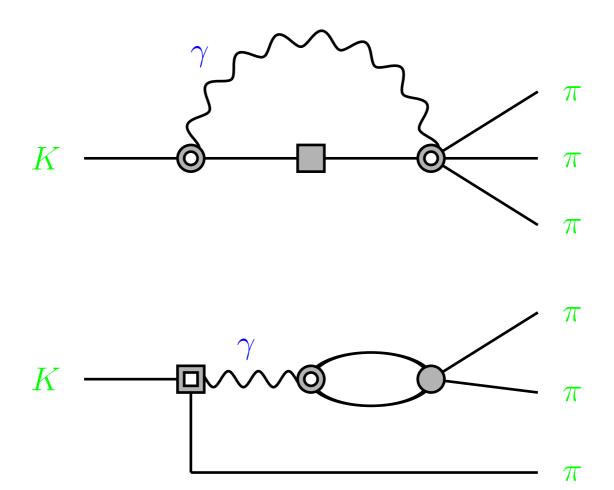
• $K \to 3\pi$ tree-level agrees with various published expressions.

Numerical results:

- \bullet Fitted χPT parameters reproduce decaywidths and linear slopes.
- Quadratic slopes more difficult. Higher order corrections or isospin breaking effects?

Next step

• Include isospin violations in the amplitudes.


$K \rightarrow 3\pi$ with isospin breaking

Strong isospin breaking:

 $m_u \neq m_d \Rightarrow \mathsf{Mixing} \; \mathsf{between} \; \eta \; \mathsf{and} \; \pi^0.$

Electromagnetic isospin breaking:

EM charges of the quarks \Rightarrow 40 new topologies.

