DAPHNE 2004

Precision spectroscopy of pionic atoms: from pion mass evaluation to tests of chiral perturbation theory

Martino Trassinelli

Laboratoire Kastler Brossel, ENS and UPMC, Paris

In collaboration with <u>Paul Scherrer Institut</u>, Villigen PSI, Switzerland, <u>Institut für Kernphysik</u>, Forschungszentrum Jülich, Jülich, Germany, <u>IMEP</u>, Österreichisch Akademie der Wissenschaften, Wien, Austria

Why pionic atoms

Pionic atoms:•Nucleus + pion = bound system

Characteristics:
Pion lifetime = 20 ns
Pion mass = 273 electron mass

Interests:

Measurement of pion mass
Measurement of the pion-nucleus strong interaction effect
(->ChPT)

$$E_n = \frac{1}{2n^2} (Z\alpha)^2 mc^2$$

$$\hbar$$

 $7.\alpha mc$

Z = nucleus charge, m=reduced mass

Pionic atoms production (1)

•Pions from PSI facilities (10⁸ pions/sec, E_{kin} =110 Mev/c)

- •Cyclotronic trap: max. magnetic field B= 3.5 Tesla
- •Target cell: gas temp=14°K to amb. temp. Eff. Pressure=~0 to 40 bars

Pionic atoms production (1)

•Pions from PSI facilities (10⁸ pions/sec, E_{kin} =110 Mev/c)

•Cyclotronic trap: max. magnetic field B= 3.5 Tesla

•Target cell: gas temp=14°K to amb. temp. X Eff. Pressure= \sim 0 to 40 bars

-> pionic atom formation in exited state

-> radiative cascade with X-ray emission

Energy transition in pionic hydrogen

Pionic atoms production (2)

D.Gotta et al.Nucl. Phys. A 660, 283 (1999)

Detection (2)

Energy (x axis on the CCD)

Spectrometer resolution = 0.4 eV
Peak determination accuracy < 0.05 eV
(depending on intensity and spectrometer configuration)

Pionic hydrogen measurements

 $\boldsymbol{\Gamma}_{\mathrm{exp}} \!=\! \boldsymbol{\Gamma}_{\mathrm{SPECTROMETER}} \!\otimes\! \boldsymbol{\Gamma}_{\mathrm{DOPPLER}} \!\otimes\! \boldsymbol{\Gamma}_{\mathrm{1S}}$

Deser's formulas

Line width <-> hadronic cross sections a

$$\frac{\Gamma_{1S}}{E_{1S}} = 8 \frac{Q_0}{r_B} \left(1 + \frac{1}{P} \right) \left(\mathbf{a}_{\pi^- \mathbf{p} \to \pi^0 \mathbf{n}} \left(1 - \delta_{\Gamma} \right) \right)^2$$

Line shift <-> hadronic cross sections a

$$\frac{\epsilon_{1S}}{E_{1S}} = \frac{-4}{r_B} a_{\pi^- p \to \pi^- p} \left(1 - \delta_{\epsilon} \right)$$

δ_ε, δ_Γ=em.corretions[1,2] P=Panofsky ratio,r_B Bohr radius, Q₀=kinematic factor

Pionic hydrogen measurements

 $\Gamma_{\rm exp} = \Gamma_{\rm SPECTROMETER} \otimes \Gamma_{\rm DOPPLER} \otimes \Gamma_{1S}$

Deser's formulas

Line width <-> hadronic cross sections a

$$\frac{\Gamma_{1S}}{E_{1S}} = 8 \frac{Q_0}{r_B} \left(1 + \frac{1}{P} \right) \left(a_{\pi^- p \to \pi^0 n} \left(1 - \delta_{\Gamma} \right) \right)^2$$

Line shift <-> hadronic cross sections a

$$\frac{\epsilon_{1S}}{E_{1S}} = \frac{-4}{r_{B}} a_{\pi^{-} p \to \pi^{-} p} \left(1 - \delta_{\epsilon} \right)$$

δ_ε, δ_Γ=em.corretions[1,2] P=Panofsky ratio,

 r_{B} Bohr radius, Q_{0} =kinematic factor

Results:

$$\varepsilon_{1S} = +7.120 \pm 0.017 \text{ eV}, \quad \Gamma_{1S} = 800 \pm 30 \text{ meV} (3-4\%)[3]$$

[1] T.E.O.Ericson, B.Loiseau and S.Wycech, arXiv:hep-ph/0310134.
[2] J. Gasser et al., Eur. Phys. J. C 26, 13 (2003)
[3] D.Gotta and al. Nucl.Phys.A721, 849 (2003)

Pion mass measurement

Relative measurement between pionic Nitrogen and muonic Oxygen transitions

Muon mass error=0.05 ppm

-> pion mass measurement with error < 2 ppm

$$\frac{m_{\pi}}{m_{\mu}} = F\left(\alpha, m_{o}, m_{N}\right) + O\left(\frac{m_{\pi}}{m_{o}}\right)^{3} + O\left(\frac{m_{\mu}}{m_{N}}\right)^{3}$$

Pion mass measurement

Relative measurement between pionic Nitrogen and muonic Oxygen transitions

Muon mass error=0.05 ppm

-> pion mass measure with error < 2 ppm

$$\frac{m_{\pi}}{m_{\mu}} = F\left(\alpha, m_{o}, m_{N}\right) + O\left(\frac{m_{\pi}}{m_{o}}\right)^{3} + O\left(\frac{m_{\mu}}{m_{N}}\right)^{3}$$

•Result? to get the final mass, we need the exact pixel size and crystal curvature radius

N.Lenz et al. Nucl.Phys.A 626, 375c (1997)

Pixel measurement setup

Pixel measurement setup

Pixel measurement setup

Conclusions and outlooks

Results:

- ϵ_{1S} on π H: meas. done: $\Delta \epsilon_{1S} / \epsilon_{1S} = 0.2\%$ (prev. exp.= 0.5%[1])
- Γ_{1S} on π H: meas. done: $\Delta\Gamma_{1S}/\Gamma_{1S} = 4\%$ (prev. exp.= 7%[1])
- Ending of pion mass measurement: expected precision < 2 ppm (end 2004-beginning 2005, PDG2002= 2.5 ppm[2])

Next steps:

- μ H measurement for radiative cascade study ($\Delta\Gamma_{1S}/\Gamma_{1S}$ ->1%)
- πH high-statistic run
- $\epsilon_{_{1S}}$ and $\Gamma_{_{1S}}$ on πD , πT and $\pi^3 He$

[1] H.C.Schroder et al., Phys. Lett.B 469, 25 (1999)
[2] Particle Data Group, Phys. Rev. D 66, 010001 (2002)

