Rare hadronic B decays

Lluïsa-Maria Mir

Lawrence Berkeley National Laboratory

BABAR Collaboration

 $Da\phi ne-04$

7-11 June 2004

Outline

- Introduction
- Analysis method
- Charmless hadronic B decays
- Decays covered in the talk
 - B⁰ decays to two isoscalars
 - $B \rightarrow KKK$
 - $B \rightarrow \phi K^*$
- Summary

Introduction

- Good agreement between theory (Standard Model) and experimental results up to now
- Look for deviations from S.M. in processes with small rates:
 - CKM-suppressed decays
 - Penguin-loop dominated decays
- What to do? Measure
 - Rates, kinematical distributions
 - Time dependent CP
 - Time integrated (direct) CP

Improved theoretical calculationsNew Physics

Disagreements

• For fully reconstructed events $(e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B})$ use E_{beam} to constrain mass and energy of the reconstructed B

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

Analysis method

- Event shape:
 - Signal: $\Upsilon(4S) \to B\bar{B}$ almost at rest
 - Background: "jetty'
 - Use Fisher, Neural Net
- Resonance masses, decay angles, etc.
- Time-dependent measurements: B-flavour, $\Delta t = t_{B_1} t_{B_2}$

Rare hadronic B decays

• B⁰_d time-dependent asymmetry:

$$\begin{split} f_{\pm}(\Delta t) &= \frac{\exp \frac{-|\Delta t|}{\tau_{B^0}}}{4 \, \tau_{B^0}} \left[1 \pm S \sin(\Delta m_d \Delta t) \mp C \cos(\Delta m_d \Delta t) \right] \\ & \underset{mixing}{\overset{\text{CPV} \text{ in interference}}{\text{mixing / no-mixing}}} \quad \begin{array}{c} \text{CPV} \text{ in decay} \end{array} \end{split}$$

- S depends on CP-content and quark-level amplitudes of final state
- $C = -A_{CP} = 0$ (SM)
- Likelihood fit with m_{ES} , ΔE , \mathcal{F} , mass and $\cos \theta$ of resonances PDFs
- Add Δt and tagging for time-dependent measurements
- Likelihood fit with signal, continuum, BB background categories

Rare hadronic **B** decays

• CKM suppressed tree decays and significant penguin contributions

- Decays rare but abundant!
 - Scalar-Pseudoscalar (f₀, a₀) (π , K)
 - Pseudoscalar-Pseudoscalar (π , K) (π , K)
 - Isoscalar $(\eta\,,\,\eta^{\prime}$, $\omega\,,\,\phi)$ $(\eta\,,\,\eta^{\prime}$, $\omega\,,\,\phi)$
 - Pseudoscalar-Vector (π , K, η , η') (ϕ , ρ , ω , K*)
 - Three-body (Combinations of π and K)
 - Vector-Vector ($\rho\rho$, ρK^* , ϕK^*)

Decay modes covered in this talk

- B⁰ decays to two isoscalars
 - \rightarrow Bound on the "tree pollution" on the $B \rightarrow \eta' K_S^0$ decay
- CP-violation in $B \rightarrow KKK$

 \rightarrow Disagreement in $\sin 2\beta$ between b \rightarrow s penguin and charmonium modes?

- Full angular analysis in $\mathsf{B} \to \phi \mathsf{K}^*$
 - \rightarrow A window to new physics?

$B^0 \rightarrow two isoscalars$ branching fractions ⁸

- Measure $(\eta, \eta', \omega, \phi) (\eta, \eta', \omega, \phi)$ combinations except $\omega\omega, \omega\phi$
- Predictions $\begin{cases} \text{ Flavour SU(3)} \\ \text{ Factorization and specific B} \rightarrow \text{ light-meson form-factors} \\ pQCD \end{cases}$
- Precise experimental measurements to test accuracy of predictions
- Time evolution of $B^0 \rightarrow \phi K^0_S$ and $B^0 \rightarrow \eta' K^0_S$:

 $S = \sin 2\beta$ if decays dominated by one single penguin amplitude (SM) $\Delta S = (S - \sin 2\beta) \le 2|\xi_{n'K_S}|$

• Grossman-Ligeti-Nir-Quinn bound:

$$\begin{split} |\xi_{\eta'\mathsf{K}_{\mathsf{S}}}| &< \left|\frac{\mathsf{V}_{\mathsf{us}}}{\mathsf{V}_{\mathsf{ud}}}\right| \left[0.59\sqrt{\frac{\mathcal{B}(\eta'\pi^{0})}{\mathcal{B}(\eta'\mathsf{K}^{0})}} + 0.33\sqrt{\frac{\mathcal{B}(\eta\pi^{0})}{\mathcal{B}(\eta'\mathsf{K}^{0})}} + 0.14\sqrt{\frac{\mathcal{B}(\pi^{0}\pi^{0})}{\mathcal{B}(\eta'\mathsf{K}^{0})}} + 0.53\sqrt{\frac{\mathcal{B}(\eta'\eta')}{\mathcal{B}(\eta'\mathsf{K}^{0})}} + 0.38\sqrt{\frac{\mathcal{B}(\eta\eta)}{\mathcal{B}(\eta'\mathsf{K}^{0})}} + 0.96\sqrt{\frac{\mathcal{B}(\eta\eta')}{\mathcal{B}(\eta'\mathsf{K}^{0})}} \right] \end{split}$$

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

$B^0 \rightarrow two isoscalars$ branching fractions 9

- $\begin{array}{l} \mbox{Recall (BaBar)} & \left\{ \begin{aligned} & \mathsf{S}_{\mathsf{charmonium}} = 0.741 \pm 0.067 \pm 0.032 \; (82 \; \mathrm{fb^{-1}}) \\ & \mathsf{S}_{\eta'\mathsf{K}_{\mathsf{S}}} = 0.02 \pm 0.34 \pm 0.03 \; (82 \; \mathrm{fb^{-1}}) \\ & \mathsf{S}_{\phi\mathsf{K}_{\mathsf{S}}} = 0.47 \pm 0.34^{+0.08}_{-0.06} \; (108 \; \mathrm{fb^{-1}}) \end{aligned} \right. \end{aligned}$
- Results with 82 M $B\overline{B}$:

Mode	$S(\sigma)$	${\cal B}(10^{-6})$	UL (10^{-6})	UL (10^{-6}) (CLEO)
$\eta\eta$	0.0	$-0.9^{+1.6}_{-1.4}\pm0.7$	2.8	18
$\eta\eta^\prime$	0.3	$0.6^{+2.1}_{-1.7}\pm1.1$	4.6	27
$\eta'\eta'$	0.4	$1.7^{+4.8}_{-3.7}\pm0.6$	10	47
$\eta \omega$	4.3	$4.0^{+1.3}_{-1.2}\pm0.4$	6.2	12
$\eta'\omega$	0.0	$-0.2^{+1.3}_{-0.9}\pm0.4$	2.8	60
$\eta\phi$	0.0	$-1.4^{+0.7}_{-0.4}\pm0.2$	1.0	9
$\eta'\phi$	0.8	$1.5^{+1.8}_{-1.5}\pm0.4$	4.5	31
$\phi\phi$	0.3	$0.3^{+0.7}_{-0.4}\pm0.1$	1.5	12

BABAR, submitted to Phys. Rev. Lett. hep-ex/0403046

• GLNQ bound on $|\xi_{\eta'K_S}|$ improved from 0.36 to 0.17

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

- 2.7 σ discrepancy BaBar/Belle in $S_{\phi K_{c}^{0}}$
- $B^0 \rightarrow K^+K^-K^0_S$ integrated over all phase-space:
 - Pro: More precise than $B^0 \rightarrow \phi K_S^0$ (more statistics)
 - Con: CP-content of final state unknown a priori

• Measure $\begin{cases} \mathcal{B}(B^0 \to K^+ K^- K^0_S) \text{ and } \mathcal{B}(B^+ \to K^+ K^0_S K^0_S) \\ B^+ \to K^+ K^0_S K^0_S \text{ charge asymmetry} \\ \text{CP-content of } B^0 \to K^+ K^- K^0_S \\ B^0 \to K^+ K^- K^0_S \text{ time-dependent asymmetry} \end{cases}$

Rare hadronic B decays

\mathcal{B} and CPV in $B^0 \rightarrow K^+K^-K^0_S$ and $B^+ \rightarrow K^+K^0_SK^0_S$

- Get \mathcal{B} with a likelihood fit using m_{ES} , ΔE and \mathcal{F}
- $B^+ \rightarrow K^+ K^0_S K^0_S$ charge asymmetry: $\mathcal{A}_{CP} = \frac{\Gamma_{\kappa \kappa^0_S \kappa^0_S} \Gamma_{\kappa + \kappa^0_S \kappa^0_S}}{\Gamma_{\kappa \kappa^0_S \kappa^0_S} + \Gamma_{\kappa + \kappa^0_S \kappa^0_S}}$
- $B^0 \rightarrow K^+K^-K^0_S$ CP-content: $f_{even} = \frac{N_{CP}}{N} = 2\frac{\Gamma(B^+ \rightarrow K^+K^0_S K^0_S)}{\Gamma(B^0 \rightarrow K^+K^-K^0)}$
- Use Δt for CP(t)-asymmetry fit

from isospin symmetry

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

• Results with 124 M BB:

CP: This sample has B^0	$\rightarrow \phi K_{S}^{0}$ removed:	$ m_{K^+K^-} - m_{\phi} >$	$\sim 15 \text{ MeV/c}^2$
---------------------------	---------------------------------------	-----------------------------	---------------------------

	(K ⁺ K ⁻ K ⁰) ^{CP}	$(K^+K^-K^0)^{all}$	$K^+K^0_SK^0_S$
$B(10^{-6})$	$20.2\pm1.9\pm1.4$	$23.8\pm2.0\pm1.6$	$10.7\pm1.2\pm1.0$
f _{even}	$0.98 \pm 0.15 \pm 0.04$	$0.83 \pm 0.12 \pm 0.03$	—
S	$-0.56 \pm 0.25 \pm 0.04$	-	-0.16 ± 0.35
С	$-0.10 \pm 0.19 \pm 0.10$	-	-0.08 ± 0.22
\mathcal{A}_{CP}	_	-	$-0.04 \pm 0.11 \pm 0.02$

• $C = 0 \rightarrow S = -\sin 2\beta = 0.57 \pm 0.26 \pm 0.04^{+0.17}_{-0}$

CP-content

BABAR, sub. to Phys. Rev. Lett. hep-ex/0406005

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

 \mathcal{B} and CPV in $B^0 \rightarrow K^+K^-K^0_S$ and $B^+ \rightarrow K^+K^0_SK^0_S$

$-\eta_{ m f} imes {\sf S}_{ m f}$	ϕK^{0}	KKK ⁰ _S
BABAR	$0.47\pm0.34^{+0.08}_{-0.06}$	$0.56 \pm 0.25 \pm 0.04^{+0.17}_{-0.00}$
Belle	$-0.96\pm0.50^{+0.09}_{-0.11}$	$0.51 \pm 0.26 \pm 0.05^{+0.18}_{-0.00}$
Average	0.02 ± 0.29 (0.28 stat only)	$0.54\pm0.18^{+0.17}_{-0.00}$ (0.18 stat only)

Disagreement between

 $b \rightarrow s$ penguin dominated and

charmonium modes of \sim 2.4 σ

Full angular analysis $\mathsf{B} \to \phi \mathsf{K}^*$

- Decays to two vector mesons reveal fundamental dynamics
 - Successes: $\sin 2\alpha$ from $B \rightarrow \rho\rho$
 - Surprises: Longitudinal polarization in $B \rightarrow \phi K^*$ smaller than SM prediction
- Hint of new physics?
 - $B \rightarrow \phi K^*$ is a pure penguin loop

• Perform full angular analysis

Full angular analysis $B \rightarrow \phi K^*$

• Angular distribution of $B \rightarrow VV$ unknown *a priori*

$$\frac{1}{\Gamma} \frac{d^{3}\Gamma}{d\cos\theta_{1}d\cos\theta_{2}d\Phi} = \frac{9}{8\pi} \frac{1}{|A_{0}|^{2} + |A_{+1}|^{2} + |A_{-1}|^{2}} \times \left\{ \frac{1}{4} \sin^{2}\theta_{1} \sin^{2}\theta_{2} \left(|A_{+1}|^{2} + |A_{-1}|^{2}\right) + \cos^{2}\theta_{1} \cos^{2}\theta_{2}|A_{0}|^{2} + \frac{1}{2} \sin^{2}\theta_{1} \sin^{2}\theta_{2} \left[\cos 2\Phi \operatorname{Re}(A_{+1}A_{-1}^{*}) - \sin 2\Phi \operatorname{Im}(A_{+1}A_{-1}^{*})\right] - \frac{1}{4} \sin 2\theta_{1} \sin 2\theta_{2} \left[\cos \Phi \operatorname{Re}(A_{+1}A_{0}^{*} + A_{-1}A_{0}^{*}) - \sin \Phi \operatorname{Im}(A_{+1}A_{0}^{*} - A_{-1}A_{0}^{*})\right] \right\}$$

$$A_{\parallel} = rac{A_{+1}+A_{-1}}{\sqrt{2}}$$
 , CP-even
 $A_{\perp} = rac{A_{+1}-A_{-1}}{\sqrt{2}}$, CP-odd

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

Full angular analysis $B \rightarrow \phi K^*$

• With 124 million $B\overline{B}$: $n_{sig} = 129 \pm 14 \pm 9$

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

Full angular analysis $\mathsf{B} \to \phi \mathsf{K}^*$

n _{sig}	$129\pm14\pm9$
fL	$0.52 \pm 0.07 \pm 0.02$
f_\perp	$0.27\pm \ 0.07\pm 0.02$
ϕ_{\parallel}	$2.63^{+0.24}_{-0.23}\pm0.04$
ϕ_\perp	$2.71^{+0.22}_{-0.24}\pm0.03$
\mathcal{A}_{CP}	$-0.12 \pm 0.10 \pm 0.03$
\mathcal{A}^0_{CP}	$-0.02 \pm 0.12 \pm 0.01$
\mathcal{A}_{CP}^{\perp}	$-0.10^{+0.25}_{-0.27}\pm0.04$
$\Delta \phi_{\parallel}$	$0.38^{+0.23}_{-0.24}\pm0.04$
${\sf \Delta}\phi_{\perp}$	$0.30^{+0.24}_{-0.22}\pm0.03$
$\mathcal{A}_{T}^{\parallel}$	$+0.02 \pm 0.05 \pm 0.01$
\mathcal{A}_{T}^{0}	$+0.11 \pm 0.07 \pm 0.01$

 $\mathcal{A}_{\mathsf{T}} = (\mathsf{q}_1 - \mathsf{q}_2) \cdot \mathsf{p}_1 \times \mathsf{p}_2$

n_{sig}: total number of events $f_{I} = \frac{|A_{0}|^{2}}{\sum_{m} |A_{m}|^{2}}$: longitudinal fraction $f_{\perp} = \frac{|A_{\perp}|^2}{\sum_{m} |A_{m}|^2}$: transverse CP-odd fraction $\phi_{\parallel} = \arg(\mathsf{A}_{\parallel}) - \arg(\mathsf{A}_{0})$ (CP-even) $\phi_{\perp} = \arg(A_{\perp}) - \arg(A_{0})$: (CP-odd) $\mathcal{A}_{CP} = \frac{n_{sig}^{+} - n_{sig}^{-}}{n_{sig}^{+} + n_{sig}^{-}} : \text{ direct CP-asymmetry}$ $\mathcal{A}_{CP}^{0} = \frac{f_{L}^{+} - f_{L}^{-}}{f_{L}^{+} + f_{L}^{-}}$: longitudinal asymmetry $\mathcal{A}_{CP}^{\perp} = \frac{f_{\perp}^{+} - f_{\perp}^{-}}{f_{\perp}^{+} + f_{\perp}^{-}}$ (CP-odd) $\Delta \phi_{\parallel} = \frac{1}{2} (\phi_{\parallel}^{+} - \phi_{\parallel}^{-}) \text{ (CP-even)}$ $\Delta \phi_{\perp} = \frac{1}{2} (\phi_{\perp}^{+} - \phi_{\perp}^{-})$ (CP-odd) $\mathcal{A}_{\rm T}^{\parallel,0} = \frac{1}{2} \left(\frac{{\rm Im}({\rm A}_{\perp}^+ {\rm A}_{\parallel,0}^{+*})}{\sum |{\rm A}_{\rm m}^+|^2} + \frac{{\rm Im}({\rm A}_{\perp}^- {\rm A}_{\parallel,0}^{-*})}{\sum |{\rm A}_{\rm m}^-|^2} \right)$

 $f_L = 1$ up to $\mathcal{O}(1/M_B^2)$ M. Suzuki Phys. Rev. D 66 054018 (2002)

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

Full angular analysis $B \rightarrow \phi K^*$

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

Summary

- B-factories provide huge amount of B mesons
 - Many rare-decay first-time observations
 - B.R. measurements more precise
 - Limits on B.R. tightened
- Rare decays are a window for new physics

 $\rightarrow f_{L}(\phi K^{*0}) = 0.52 \pm 0.07 \pm 0.02$ (S.M. predicts 1)

• No violation of SM found yet

 \rightarrow Good agreement *BABAR*/Belle in S_{KKK}

• More data to come

Lluïsa-Maria Mir, LBNL

Two-body involving pions and kaons

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

$\mathsf{B}\to\mathsf{PV}$

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

 $\mathsf{Da}\phi\mathsf{ne-04}$

Three-body decays

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

$\mathsf{B} \to \mathsf{V}\mathsf{V}$

Lluïsa-Maria Mir, LBNL

Rare hadronic B decays

 $\mathsf{Da}\phi\mathsf{ne-04}$