Towards a solution of the Γ_n/Γ_p Puzzle in the Non–Mesonic Weak Decay of Λ –Hypernuclei

G. Garbarino, Università di Torino

DA Φ NE 2004: Physics at meson factories

Laboratori Nazionali di Frascati, Frascati, Italy June 7–11, 2004

• Decay Modes of Λ -Hypernuclei

• The Γ_n/Γ_p Puzzle

✤ The Asymmetry Puzzle

 \blacklozenge Our approach

 \bullet Results

Conclusions

DA Φ NE 2004: Physics at meson factories

Towards a solution of the Γ_n/Γ_p Puzzle in the Non–Mesonic Weak Decay of Λ –Hypernuclei (page 1)

DECAY MODES OF A-HYPERNUCLEI

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 2)

THE Γ_n/Γ_p PUZZLE

For many years, a sound theoretical explanation of the large experimental values of Γ_n/Γ_p has been missing.

[W. M. Alberico and G. Garbarino, Phys. Rept. 369 (2002) 1–109]

Theory underestimates the central data for all considered hypernuclei:

but the large experimental error bars do not allow one to reach any definite conclusion.

The One–Pion–Exchange (OPE) model supplies very small ratios:

$$\left[\frac{\Gamma_n}{\Gamma_p}\right]^{\text{OPE}} = 0.05 \div 0.20$$

but can reproduce the total non–mesonic rates observed for light and medium hypernuclei.

Other interaction mechanisms beyond the OPE might then be responsible for the overestimation of Γ_p and the underestimation of Γ_n

• heavier mesons
$$(\rho, K, K^*, \omega, \eta, 2\pi/\rho, 2\pi/\sigma)$$

- \blacklozenge direct quark mechanism
- \bullet two-nucleon induced mechanism
- \blacklozenge nucleon final state interactions

THE ASYMMETRY PUZZLE

Non–Mesonic Weak Decay of Polarized A–hypernuclei

Proton intensity:

$$I(\Theta) = I_0 \left[1 + \mathcal{A}(\Theta) \right]$$

$$I_0 = \frac{\sum_M \sigma(J, M)}{2J + 1} \qquad \mathcal{A}(\Theta) = P_y A_y \cos \Theta$$

 P_y = hypernuclear polarization A_y = hypernuclear asymmetry parameter

$$A_{y} = \frac{3}{J+1} \frac{\sum_{M} M \sigma(J, M)}{\sum_{M} \sigma(J, M)}$$
$$\sigma(J, M) = \sum_{F} |\langle F | \mathcal{M} | I; J, M \rangle|^{2}$$

In the shell model weak–coupling scheme

$$\mathcal{A}(\Theta) = p_{\Lambda} a_{\Lambda} \cos \Theta$$

where

$$p_{\Lambda} = \begin{cases} -\frac{J}{J+1}P_y & \text{if } J = J_C - \frac{1}{2} \\ P_y & \text{if } J = J_C + \frac{1}{2} \\ \Lambda \text{ polarization} \end{cases}$$
$$a_{\Lambda} = \begin{cases} -\frac{J+1}{J}A_y & \text{if } J = J_C - \frac{1}{2} \\ A_y & \text{if } J = J_C + \frac{1}{2} \end{cases}$$
intrinsic Λ asymmetry parameter

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 4)

Experiments measure

$$\mathcal{A}^{M}(0^{\circ}) = \frac{I^{M}(0^{\circ}) - I^{M}(180^{\circ})}{I^{M}(0^{\circ}) + I^{M}(180^{\circ})}$$

and determine

$$a_{\Lambda}^{\mathrm{M}} = rac{\mathcal{A}^{\mathrm{M}}(0^{\circ})}{p_{\Lambda}}$$

by using an indirect measurement $\binom{5}{\Lambda}$ He) or a theoretical evaluation $\binom{12}{\Lambda}$ C) of p_{Λ} . The relations

$$I^{\mathrm{M}}(\Theta) = I_{0}^{\mathrm{M}} \left[1 + \mathcal{A}^{\mathrm{M}}(\Theta) \right] \qquad \mathcal{A}^{\mathrm{M}}(\Theta) = p_{\Lambda} \, a_{\Lambda}^{\mathrm{M}} \cos \Theta$$

are thus assumed.

	$^{5}_{\Lambda}{ m He}$	$^{12}_{\Lambda}{ m C}$			
K. Sasaki et al. a_{Λ}					
OPE	-0.44				
$\pi + K$	-0.36				
$\pi + K + DQ$	-0.68				
A. Parreño et al.					
OPE	-0.25	-0.34			
$\pi + K$	-0.61	-0.64			
OME	-0.68	-0.73			
KEK–E160 a_{Λ}^{M}		-0.9 ± 0.3			
KEK–E278	0.24 ± 0.22				
${ m KEK-E508} \ ({ m prel.})$		-0.44 ± 0.32			
KEK-E462 (prel.)	0.07 ± 0.08				
Inconsistencies appear at the experimental level					
One expects $ a_{\Lambda} > a_{\Lambda}^{M} $ due to FSI effects					

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 5)

OUR APPROACH

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay

G. Garbarino, Università di Torino

of Λ -Hypernuclei (page 7)

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 8)

Number of primary nucleons: $N_n^{\rm wd} \propto 2\Gamma_n + \Gamma_p$ $N_p^{\rm wd} \propto \Gamma_p$ $\implies \qquad \frac{\Gamma_n}{\Gamma_p} \equiv \frac{1}{2} \left(\frac{N_n^{\rm wd}}{N_p^{\rm wd}} - 1 \right)$ But, due to FSI $\frac{\Gamma_n}{\Gamma_n} \neq \frac{1}{2} \left(\frac{N_n}{N_n} - 1 \right) \equiv R_1(T_N^{\text{th}})$ N_n, N_p are the number of nucleons emitted by the nucleus Table 2: Predictions for $R_1(T_N^{\text{th}})$ for $\frac{5}{\Lambda}$ He. $T_N^{\rm th}$ (MeV) Γ_n/Γ_p 0 30 60 OPE 0.04 0.130.160.09 OMEa 0.150.320.39 0.34OMEf 0.190.400.49 0.46 KEK – E462 : $R_1(60 \text{ MeV}) = 0.6 \pm 0.2$ (preliminary) [H. Bhang, HYP2003]

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 9)

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 10)

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 11)

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 12)

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 13)

Number of primary NN pairs:

$$N_{nn}^{\rm wd} \propto \Gamma_n$$
$$N_{np}^{\rm wd} \propto \Gamma_p$$

Denoting with N_{nn} and N_{np} the number of nucleons emitted by the nucleus:

$$\frac{\Gamma_n}{\Gamma_p} \equiv \frac{N_{nn}^{\text{wd}}}{N_{np}^{\text{wd}}} \neq \frac{N_{nn}}{N_{np}} = R_2 \left(\Delta \theta_{12}, T_N^{\text{th}} \right)$$

Table 4: Predictions for N_{nn}/N_{np} for $^{5}_{\Lambda}$ He (cos $\theta_{NN} \leq$ -0.8 and $T_N^{\text{th}} = 30 \text{ MeV}$)

	N_{nn}/N_{np}	Γ_n/Γ_p
OPE	0.25	0.09
OMEa	0.51	0.34
OMEf	0.61	0.46
KEK-E462	0.44 ± 0.11	

Data from: [H. Outa, HYP2003]

 $DA\Phi NE$ 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay

G. Garbarino, Università di Torino

of Λ -Hypernuclei (page 14)

A model independent analysis of Γ_n/Γ_p

• Introduce the total number of NN pairs emitted per NMWD:

$$N_{nn} = \frac{N_{nn}^{1\mathrm{Bn}} \Gamma_n + N_{nn}^{1\mathrm{Bp}} \Gamma_p + N_{nn}^{2\mathrm{B}} \Gamma_2}{\Gamma_n + \Gamma_p + \Gamma_2}$$
$$N_{np} = \frac{N_{np}^{1\mathrm{Bn}} \Gamma_n + N_{np}^{1\mathrm{Bp}} \Gamma_p + N_{np}^{2\mathrm{B}} \Gamma_2}{\Gamma_n + \Gamma_p + \Gamma_2}$$

which define the six weak decay model-independent quantities: $N_{nn}^{1\text{Bn}}$ (the number of nn pairs emitted per neutron-induced NMWD), etc.

• Γ_n/Γ_p can thus be obtained from a measurement of N_{nn}/N_{np} as:

$$\frac{\Gamma_n}{\Gamma_p} = \frac{N_{nn}^{1\mathrm{Bp}} + N_{nn}^{2\mathrm{B}}\frac{\Gamma_2}{\Gamma_1} - \left(N_{np}^{1\mathrm{Bp}} + N_{np}^{2\mathrm{B}}\frac{\Gamma_2}{\Gamma_1}\right)\frac{N_{nn}}{N_{np}}}{\left(N_{np}^{1\mathrm{Bn}} + N_{np}^{2\mathrm{B}}\frac{\Gamma_2}{\Gamma_1}\right)\frac{N_{nn}}{N_{np}} - N_{nn}^{1\mathrm{Bn}} - N_{nn}^{2\mathrm{B}}\frac{\Gamma_2}{\Gamma_1}}$$

using Γ_n/Γ_p and Γ_2/Γ_1 as fitting parameters

[•] Using the KEK–E462 data $N_{nn}/N_{np} = 0.44 \pm 0.11$ we obtain:

$$\frac{\Gamma_n}{\Gamma_p} = 0.26 \pm 0.11 \qquad (\Gamma_2 = 0.2 \,\Gamma_1)$$
$$\left(\frac{\Gamma_n}{\Gamma_p} = 0.39 \pm 0.11 \quad \text{if} \quad \Gamma_2 = 0\right)$$

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 15)

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 16)

ASYMMETRY

The calculated proton intensities are well fitted by

$$I^{\mathrm{M}}(\Theta) = I_{0}^{\mathrm{M}} \left[1 + p_{\Lambda} a_{\Lambda}^{\mathrm{M}} \cos \Theta \right]$$

where, normalizing per NMWD and assuming $P_y = 1$:

 $I_0^{\rm M} = \text{total number of protons emitted per NMWD}$

$$p_{\Lambda} = egin{cases} 1 & ext{for } {}^{5}_{\Lambda} ext{He} \ -1/2 & ext{for } {}^{12}_{\Lambda} ext{C} \end{cases}$$

Table 5: Asymmetry parameters for ${}_{\Lambda}^{5}$ He and ${}_{\Lambda}^{12}$ C. The twonucleon induced decay is neglected. Preliminary data are from [T. Maruta et al., nucl-ex/0402017, HYP2003]

	${}^{5}_{\Lambda}\text{He}$	a^{M}	$\frac{12}{\Lambda}$ C	a^{M}
OPE	$\frac{10}{0.92}$	$\frac{a_{\Lambda}}{-0.25}$	$10 \\ 0.93$	$\frac{a_{\Lambda}}{-0.34}$
$T_N^{\mathrm{Th}} = 0$	1.56	-0.11	3.15	-0.03
$T_N^{\mathrm{Th}} = 30 \mathrm{MeV}$	0.99	-0.16	1.23	-0.20
$T_N^{\rm Th} = 50 { m MeV}$	0.78	-0.18	0.78	-0.26
OME	0.69	-0.68	0.75	-0.73
$T_N^{\mathrm{Th}} = 0$	1.28	-0.29	2.78	-0.13
$T_N^{\rm Th} = 30 { m MeV}$	0.77	-0.45	1.05	-0.36
$T_N^{\rm Th} = 50 { m MeV}$	0.60	-0.51	0.66	-0.49
KEK-E462		0.07 ± 0.08		
KEK-E508				-0.44 ± 0.32
			-	

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 17)

CONCLUSIONS

DA Φ NE 2004: Physics Towards a solution of the Γ_n/Γ_p Puzzle at meson factories in the Non-Mesonic Weak Decay of Λ -Hypernuclei (page 18)