Results on HQ Physics at TeV Energies

Manfred Paulini
Carnegie Mellon University
8 June 2004
DAΦNE 2004 Conference
Frascati, Italy

- Introduction
 - B Hadron Producers
- Selected HQ Result from the Tevatron
 - Masses and Lifetimes
 - Charmless B decays
 - Hadronic mass moments
 - Pentaquarks
- Brief Look into the Future
 - B_S mixing prospects
- Conclusion

Current Understanding of Matter

Flavour Changing Interactions in SM

Important questions about SM:

- 1. What is the origin of <u>electroweak</u> symmetry breaking?
 - => Higgs mechanism
- 2. What is the origin of <u>flavour</u> symmetry breaking?
 - => Flavour changing interactions
- In SM flavour changing processes depend on CKM matrix
- Individual matrix elements not predicted by SM- must be measured by flavour changing interactions

$$egin{pmatrix} egin{pmatrix} egi$$

B hadron decays measure 5 CKM matrix elements

Unitarity of CKM matrix:

Goal of present & future B physics:

- Test flavour changing interactions in all possible ways
 - => Theoretically clean modes versus experimental accessibility
- Measure sides and angles of CKM triangle in many ways
 - => Overconstrain triangle

B Hadron Producers

$$\Upsilon(4S): e^+e^- \to \Upsilon(4S) \to B\bar{B}$$

The Players:

ARGUS & CLEO (Pioneers) BaBar & Belle (B Factories)

ARGUS:

B Hadron Producers

$$Z^0$$
: $e^+e^- \rightarrow Z^0 \rightarrow b\bar{b}$

SLD:

The Players:

ALEPH, DELPHI, L3, OPAL SLD

B Hadron Producers

Tevatron: $p\bar{p} \rightarrow b\bar{b}X$

- Lowest order $\mathcal{O}(\alpha_s^2)$ diagrams for $b\bar{b}$ production
 - (a)-(c) gluon-gluon fusion
 - (d) quark-antiquark annihilation

CDF:

The Players:

(UA1), CDF & D0

Other B producers: Hera-B, FNAL fixed target

The Future: LHCb, BTeV, Atlas, CMS

 Why the (→*▼**©↓©) do we want to do B physics at a hadron machine?

B Physics at Hadron Machines

Advantages of B Physics at Hadron Machine:

All B hadrons are produced: $B^0, B^+, B_S^+, B_c^+, \Lambda_b^0$ Enormous cross section:

- B-factory: $\sigma(\Upsilon(4S) \to B\bar{B}) \sim 1 \; \mathrm{nb}$

- Tevatron: $\sigma(p\bar{p} \to b\bar{b}) \sim 100~\mu {
m b}$

B Trigger at Hadron Machines

Comparison with charm production

- Total inelastic cross section:
 σ(total)/σ(b)~1000
- → It's all about the trigger!

B Triggers:

- B trigger based on leptons (Run I)
- → Dilepton trigger: J/ψ, B mixing
- → Single lepton: semileptonic B decays
- Displaced track trigger (CDF)
 (exploit 'long' B lifetime)

Level 1: Fast track trigger (XFT) finds charged track with $p_T > 1.5$ GeV/c

Level 2: Link tracks into silicon; require track impact parameter > 100 μm (SVT)

Access to hadronic B decays => B physics program fully competitive with B factories

Tevatron Run II

Tevatron Performance:

- Tevatron has been working well in 2004
- Record initial luminosity =
 = 7.3 x 10³¹ sec⁻¹ cm
- >300 pb⁻¹ on tape
- ~100-250 pb⁻¹ used for analysis
- (Run I: ~100 pb⁻¹)
- CDF & D0 data taking efficiency ~80-90%

Run II: CDF Detector

The Upgraded CDF Detector:

- Tracking upgrade:
 - Silicon:

system

Beampipe layer + 5 layers + 2/1 outer (forward) layers (radial 1.5 - 28 cm) Full coverage of luminous region; Si tracking up to $|\eta|$ < 2

Drift Chambe

Silicon Vertex Detector

Run II: D0 Detector

The Upgraded D0 Detector:

What's new at D0:

- New detector elements:
 - solenoid,silicon tracker,fiber tracker
 - new preshower detector
- Improved muon system
- Enhanced trigger system
- Extra shielding around beamlines

Tevatron HQ Results at APS 2004

List of CDF & D0 Heavy Quark Results at APS 2004:

- Observation of Semileptonic B Decays to Narrow D** Mesons
- Flavor Oscillations in B^o Mesons with OS Muon Tagging
- B^o Mixing with Same Side Tagging
- Measurement of Lifetime Ratio for B⁰ and B⁺ Mesons
- Measurement of B Lifetimes in B->J/ψ K Decays
- Observation of X(3872)
- Limit and Sensitivity for Rare Decay $B_s \rightarrow \mu\mu$
- Polarization Amplitudes in B->VV
- BR and A_{CP} in $B^+ \rightarrow \phi K$
- B^o Mixing with SST in Fully Reconstructed B Decays
- Study of Jet Charge Tagging
- Measurement of Hadronic Moments in Semileptonic B Decays
- Pentaquark Search in $\theta^+ \rightarrow pKs$
- Pentaquark Search in $\theta_c \rightarrow pD^*$
- Pentaquark Search for **Ξ**(1860)
- B_s --> VV Lifetimes
- Measurement of B Hadron Masses
- Measurement of BR(B $^+$ \rightarrow J/ $\psi\pi$)

Impressive Heavy
Quark Program in
Progess at
Tevatron

- Search for B_c --> J/ψμX
- Soft-Electron Reconstruction for B_c→J/ψeX
- BR and A_{CP} in $D^+ \rightarrow \pi^+ \pi^- \pi^+$

(List might be incomplete)

Selected Run II Results

Exclusive B Decays:

Accumulate large samples of fully reconstructed B hadrons:

finds in 250 pb⁻¹:

$$egin{aligned} B^+ & o J/\psi K^+ & ({
m N} \sim 4300) \ B^0 & o J/\psi K_S^0 & ({
m N} \sim 375) \ B^0 & o J/\psi K^{*0} & ({
m N} \sim 1900) \ B_s^0 & o J/\psi \phi & ({
m N} \sim 400) \ \Lambda_b & o J/\psi \Lambda & ({
m N} \sim 52) \end{aligned}$$

Clean signals - good S/B

Selected Run II Results

Exclusive B Decays:

Precision mass measurements from exclusive B -> J/ψ X

$$m(B^+) = (5279.10 \pm 0.41 \pm 0.34) \; \mathrm{MeV}/c^2 \ m(B^0) = (5279.57 \pm 0.53 \pm 0.30) \; \mathrm{MeV}/c^2 \ m(B_s^0) = (5366.01 \pm 0.73 \pm 0.30) \; \mathrm{MeV}/c^2 \ m(\Lambda_b) = (5619.7 \pm 1.2 \pm 1.2) \; \mathrm{MeV}/c^2 \ (\text{current world best values})$$

B Lifetimes

<u>τ(B+)/τ(B0)</u> from Semileptonic Decays

Novel Analysis Technique

- Measure directly lifetime ratio instead of indivdual lifetimes
- Make use of:
 - ⁻D* mainly from B⁰ (B+ 12%, B⁰ 86%, B_s 2%)
 - ⁻ D⁰ mainly from B⁺ (B⁺ 82%, B⁰ 16%, B_s 2%) ⁴
 - Group events into 8 bins ofVisible Proper Decay Length:
 - Measure $\mathbf{r} = \mathbf{N}(\mu \mathbf{D}^*)/\mathbf{N}(\mu \mathbf{D}^0)$ in each bin
 - In both cases fit D^0 signal to extract $N(\mu D)$
 - Use slow pion only to distinguish Bo from B+ (no lifetime bias)
- Account for feed-down from D** using MC

B Lifetimes

<u>τ(B+)/τ(B0) Lifetime Ratio</u>

Use binned χ^2 fit of event ratios to determine $\tau(B^+)/\tau(B^0)$

DØ RunII Preliminary, Luminosity = 250 pb⁻¹

DO Preliminary result:

 $\tau(B^+)/\tau(B^0) = 1.093 \pm 0.021 \pm 0.022$

Competitive with B factories

Lifetimes from excl. B -> J/ψ K

Use fully rec. B decays

 $c\tau_{Bu} = 498.1 \pm 9.9 (stat) \pm 2.4 (syst)$

 $c\tau_{Bd} = 461.3\pm15.4(stat)\pm2.4(syst)$

 $c\tau_{Bs} = 410.4 \pm 30.0 (stat) + 2.4 - 2.9 (syst)$

 $\tau_{\text{Bu/}} \tau_{\text{Bd}} = 1.080 \pm 0.042$

 $\tau_{\text{Bs/}}\tau_{\text{Bd}}\text{= 0.890}\pm\text{0.072}$

B_s->J/ψφ decay length

Charmless B Decays

Examples of B signals using displaced track trigger at CDF from 2003:

$$B^0 o D^+\pi^- \quad \Lambda_b o \Lambda_c\pi$$

New: Search for charmless B decays from gluonic penguin decays

$$B^+ o \phi K^+$$
 $B^0_s o \phi \phi$
 $b' t$
 s
 ϕ
 B'/B_s
 gl
 s
 k'/ϕ

- Decay of interest in light of possible anomalies by Belle/BaBar in $B^0 \rightarrow \phi K_s$
- B_s→ op has never been observed
- Use displaced track trigger (180 pb⁻¹)

Observation of B[±] -> \(\psi \) K[±]

Updated BR measurement and first A_{CP} determination

- Fit result: N = 47±8 events
- Main background B[±] -> f₀ K[±]

BR =
$$(7.2 \pm 1.3 \pm 0.7) \cdot 10^{-6}$$

$$A_{CP} = 0.07 \pm 0.17 \pm 0.06$$

 $L = 180 \pm 10 \text{ pb}^{-1}$

1.05 1.0 M_{KK} [GeV/c²]

First Evidence for $B_s^0 \rightarrow \phi \phi$

- Search for $B_s^0 \rightarrow \phi \phi$: Perform blind analysis
- Use MC and high statistics 4-track modes for search optimization
- Normalize yield to $B_s \rightarrow J/\psi \phi$ decay (rel. eff.)
- Observe 12 events in search window

BR= $(1.4 \pm 0.6 \pm 0.2 \pm 0.5 (BR)) \cdot 10^{-5}$

(almost 5 sigma observation)

Hadronic Mass Moments

- Most precise determination of V_{cb} based on inclusive semileptonic decays $B \rightarrow X_c I \vee (X_c = D^+/D^0/D^*/D^{**})$
- Basic idea: OPE applied to HQET relates experimental width to V_{cb} : $\Gamma(B->X_c Iv) = |V_{cb}|^2 f(\Lambda,\lambda_1,\lambda_2,...)$ ['form factors' in expansion in powers of M_B) $\Lambda,\lambda_1,\lambda_2,...$ OPE parameters related to hadronic mass moments of $M^2(X_c)$ mass distribution in semi-leptonic decays

• Measurement of mass moments provides useful constraints on $\Lambda, \lambda_1, \lambda_2, ...$ & improves determination of V_{cb}

- Challenge: Reconstruct B->D**IX, with D**->D+/D⁰/D* X
- Need to understand all possible reflections/cross-talks between various modes

Doable at hadron collider! Preliminary analysis at CDF!

Hadronic Mass Moments

Preliminary Result of CDF Anlysis:

$$M_1 = (0.459 \pm 0.037_{stat} \pm 0.0019_{exp} \pm 0.062_{BR}) \text{ GeV}^2$$

 $M_2 = (1.04 \pm 0.25_{stat} \pm 0.07_{exp} \pm 0.10_{BR}) \text{ GeV}^4$

Dominant parameters in HQET expansion:

$$\Lambda = (0.390 \pm 0.075_{\text{stat}} \pm 0.026_{\text{exp}} \pm 0.064_{\text{BR}} \pm 0.058_{\text{theo}}) \text{ GeV}$$

 $\lambda_1 = (-0.182 \pm 0.055_{\text{stat}} \pm 0.016_{\text{exp}} \pm 0.022_{\text{BR}} \pm 0.077_{\text{theo}}) \text{ GeV}^2$

Competitive

B-factories!

with

Observation of D** at D0

- Start from B $\rightarrow \mu \nu$ D*X sample, add another π^+
- Look at invariant mass of D*- π+ system
- Observe excess in right-sign combinations
- Interpret as merged
 D₁⁰(2420) and D₂*⁰(2460)

Br(B
$$\rightarrow$$
 {D₁⁰,D₂*0} $\mu \vee X$) \times Br({D₁⁰,D₂*0} \rightarrow D*+ π -) =
(0.280 \pm 0.021 \pm 0.088) %

$X(3872) \rightarrow J/\Psi \pi^+ \pi^-$

Aug. 2003, Belle announced new particle at m~3872 MeV/c² Observed in B+ decays: B+ -> K+ X(3872), X(3872) \rightarrow J/ Ψ $\pi^+\pi^-$ N = 35.7±6.8, m = (3872.0±0.6±0.5) MeV/c²

X(3872) confirmed by CDF & D0:

$$N = 300 \pm 61$$

 $\Delta m = (768\pm4\pm4) \text{ MeV/c}^2$

$$N = 730 \pm 90$$

 $m = (3871.3 \pm 0.7 \pm 0.4) \text{ MeV/c}^2$

Five quark state: 4 quarks + 1 anti-quark flavour (anti-quark) ≠ flavour(quarks)
Predicted by Diakonov, Petrov, Polyakov (1997)
States observed so far:

Discuss first: ⊕⁺
mass ~ 1530 MeV, width < 15 MeV
Decays equally to nK⁺ and pK⁰

(Jaffe, Wilczek PRL 91, 232003)

Θ⁺: Reported evidence in nK⁺

Θ⁺: Reported evidence in pK⁰

Θ⁺: Reported negative evidence

BaBar at APS (prelim.)

Θ⁺: Summary of evidence ~10 positive reports, some negative reports

=> Search at Tevatron

Experiments	Mass (MeV)	Width (MeV)	Observation
SPring-8 [6]	1540 ± 10	< 25	nK^+
SAPHIR [7]	$1540 \pm 4 \pm 2$	< 25	nK^+
CLAS-1 [8]	1542 ± 5	< 21	nK^+
CLAS-2 [9]	1555 ± 10	< 26	nK ⁺
DIANA [10]	1539 ± 2	< 9	$K^+ n \to K_S^0 p$
HERMES [11]	$1528 \pm 2.6 \pm 2.1$	17 ± 9 ± 3	pK_S^0
SVD [13]	$1526\pm3\pm3$	< 24	pK_S^0
Asratyan et al. [12]	1533 ± 5	< 20	pK_S^0
ZEUS [14]	$1521.5 \pm 1.5 \begin{array}{l} +2.8 \\ -1.7 \end{array}$	$6.1 \pm 1.6 \begin{tabular}{c} +2.0 \\ -1.4 \end{tabular}$	$pK_S^0,ar{p}K_S^0$
COSY-TOF [15]	1530 ± 5	< 18 ± 4	$pp \rightarrow \Sigma^+ pK_S^0$

Masses in agreement?

All signals in 3-6 σ range

Search for $\Theta^+ o pK^0_S o p\,\pi^+\pi^-$

Use 2 energy ranges:

min.bias (23mio), jet20 (16mio)

Identify protons with ToF

Reconstruct reference states

measured velocity $\beta = v/c$

1.1

0.9

8.0

0.7

0.6

0.5

CDF Run II preliminary 180 pb1

minbias data

24000

22000 20000

18000

16000

14000

12000

10000

8000

6000

4000

Search for
$$\Theta^+ o pK^0_S o p\,\pi^+\pi^-$$

No evidence at CDF for narrow resonance CDF is working on limit for σ (Θ +/ Λ (1520))

The cousin of Θ^+ : Ξ^{--}

NA49 at CERN SPS (hep-ex/0310014) Observed in $\Xi\pi$ mass, N=67.5 events m = 1.862 \pm 0.002 GeV

Search for Ξ (1860) at CDF:

- Search for

$$\Xi_{3/2}^{--} o \Xi^{-}\pi^{-}, \ \Xi_{3/2}^{0} o \Xi^{-}\pi^{+}$$

- CDF developed dedicated tracking of long-lived hyperons in Si. detector
- Clean sample of 40k Ξ (x20 stat. NA49)
- Use established $\Xi(1530)^0 o \Xi^-\pi^+$ as calibration signal

Search for **E**(1860) at CDF:

 No evidence for narrow signal found in 2 data samples (had. track & jets)

	NA49	CDF (90%CL)
$rac{N(\Xi^-\pi^+)}{N(\Xi(1530))}$	0.21	< 0.06
$rac{N(\Xi^-\pi^-)}{N(\Xi(1530))}$	0.24	< 0.03

Similar acceptance:

$$A = rac{\sigma(pp
ightarrow \Xi(1530)) \cdot a(\Xi(1530))}{\sigma(pp
ightarrow \Xi) \cdot a(\Xi)}$$

NA49: A ~ 0.068

CDF: A ~ 0.061

Search for Charmed Pentaquark

- March 2004: H1 at HERA:
- Evidence for Θ_c^0 : $|u u d d \bar{c}\rangle$
- Reconstructed in $\Theta_c^0 \rightarrow D^{*+}p$ m=3099±3±5 MeV, N=51±11

CDF:

- Large sample of D*+ (0.5 mio)
- Use D^{**} -> $D^{*+} \pi$ as calibration mode (15k)

Pentaquarks at CDF

Search for Charmed Pentaquark

- Identify proton using ToF (p<2.75 GeV) and dE/dx (p>2.75 GeV)
 (~ 2σ separation each)
- No evidence of charmed pentaquark seen
- Combined upper limit: < 29 events (90% C.L.)

use ToF use dE/dx

Pentaquark production mechanism different in pp collisions?

Rare Decays

Many other results not included

- Rare decays (separate talk)
- CDF:

$$Br(B_s \to \mu^+ \ \mu^-)$$
 < 5.8 \cdot 10⁻⁷ @ 90 % *CL* $Br(B^0 \to \mu^+ \ \mu^-)$ < 1.5 \cdot 10⁻⁷ @ 90 % *CL*

- D0: Box of blind search not yet opened
- Expected sensitivity:

 $\text{Br(B}_\text{s} \to \mu^\text{+}~\mu^\text{-})$ < 1.0·10⁻⁶ @ 95 % CL

B_S Oscillations

Why are we interested in B_s Oscillations?

B_S Oscillations

Why are we interested in B_s Oscillations?

Want to measure:

from Lattice

B_S Oscillations

Tevatron only place to observe B oscillations until LHC

Difficult measurement (give CDF prospects first):

Current conditions: Use fully rec. Bs \rightarrow Ds π

 $S = 1600 \text{ events/fb}^{-1}$

S/B = 2/1

 $\varepsilon D^2 = 4 \% (SLT + SST + JQT)$

 σ_t =67 fs

Short term: 500 pb⁻¹ (no improvement up to 2005)

$$2\sigma \text{ (for } \Delta m_s = 15 \text{ ps}^{-1}\text{)}$$

Reach the current indirect limit.

Cover the Standard Model favored range

Beyond SM favoured range (conserv. improvements)

5
$$\sigma$$
 if $\Delta m_s = 18 \text{ ps}^{-1}$ with 1.8 fb⁻¹

5 σ if Δ m_s = 24 ps⁻¹ with 3.2 fb⁻¹

CDF & D0 work towards B_s mixing with high priority

Towards B_s Oscillations

First Measurement of B⁰ oscillations at D0

Use sample of semileptonic B -> $D^* \mu$ decays Tagging procedure

- opposite side tight muon
- muon $p_T > 2.5 \text{ GeV/c}$
- cos $\Delta\phi(\mu, B)$ < 0.5

Fit procedure

• Binned χ^2 fit

Preliminary results:

 $\Delta m_d = 0.506 \pm 0.055 \pm 0.049 \text{ ps}^{-1}$

Tagging efficiency: 4.8 +/- 0.2 % Tagging dilution: 46 +/- 4.2 %

One of the best measurements at a hadron collider

Towards B_s Oscillations at D0

Prospects for B_s⁰ oscillations at D0:

Semileptonic decays $\mathbf{B}_{s} \rightarrow \mu \nu \mathbf{D}_{s}$:

- very good statistics
- excellent yield: 9500 candidates in ~250 pb⁻¹
- if $\Delta m_{\rm s} \cong$ 15 ps⁻¹, first indication of $B_{\rm s}$ mixing might be possible with 500 pb⁻¹

Fully rec. hadronic decays:

- poor statistics
- excellent proper time resolution
- need a few fb⁻¹ of data to reach $\Delta m_s \cong 18 \text{ ps}^{-1}$

Towards B_s Oscillations at CDF

First Run II measurement of B⁰ oscillations at CDF:

Use fully reconstructed B⁰ -> J/ ψ K^{*} & B⁰ -> D⁻ π ⁺ Use same side tagging

$$\Delta m_d = 0.55 \pm 0.10 \pm 0.01 \text{ ps}^{-1}$$

CDF flavour tagging studies:

Same-side (B⁰)

 $\varepsilon D^2 \approx (1.0 \pm 0.5)\%$

Muon tagging

 $\varepsilon D^2 \approx (0.7 \pm 0.1)\%$

JQT

 $\varepsilon D^2 \approx (0.42 \pm 0.02)\%$

OS-Kaon

in progress

The Future

Goal of present & future B physics:

- Test flavour changing interactions in all possible ways
 - => Theoretically clean modes versus experimental accessibility
- Measure sides and angles of CKM triangle in many ways
 - => Overconstrain triangle

Shed more light on CKM Triangle

Possible CKM Scenarios

Want to overconstrain CKM triangle Possible scenario:

Possible CKM Scenarios

Want to overconstrain CKM triangle Possible scenario:

Possible CKM Scenarios

Want to overconstrain CKM triangle Possible scenario:

Conclusions

- Wealth of new B physics results from CDF & D0
 - D0 demonstrates very competitive B physics program in Run II
 - Many new results competitive with B factories
 - Negative pentaquark searches from CDF
- CDF & D0 work towards measurement of B_s oscillations

 Looking forward to dedicated B physics experiments at a hadron collider (LHCb & BTeV)

