Recent BES Results on Ψ(2S) Decay

Xiaohu Mo

IHEP, Beijing

for the BES Collaboration

DA Φ NE 2004: Physics at meson factories

7-11 June 2004 - Laboratori Nazionali di Frascati - Italy

01.11-02.3

• $\psi' \rightarrow \mathbf{V} \mathbf{P}$ • $\psi' \rightarrow V T$ $\bullet \psi' \rightarrow \mathbf{P} \mathbf{P}$ $(\psi', J/\psi \rightarrow K^0_S K^0_L)$ • $\psi' \rightarrow J/\psi$ contained **12% rule and "** $\rho\pi$ **puzzle"**

🗲 12% rule

[the relation between J/ ψ and ψ^{*}]

$$Q_{h} = \frac{B_{\psi^{'} \to X}}{B_{J/\Psi \to X}} = \frac{B_{\psi^{'} \to e^{+}e^{-}}}{B_{J/\Psi \to e^{+}e^{-}}} = 12\%$$

- Violation was revealed by MARK-II, confirmed by BES at higher sensitivity;
- Provide new clues concerning the dynamics of charmonium decay .

 $\begin{array}{l} \psi^{\circ} \text{ Decays:} \\ 1. \text{ VP: } \phi = \underline{-90^{\circ}} \\ \text{ or } 180^{\circ} \\ 2. \text{ PP: } \phi = \underline{(-82 \pm 29)^{\circ}} \\ \text{ or } (+121 \pm 27)^{\circ} \\ \text{ J. Z. Bai et al. , PRL92, 052001 (2004)} \end{array} \right\} \begin{array}{l} \text{Large} \\ \text{ phase} \\ \sim -90^{\circ} \end{array}$

The phase study in e⁺e⁻ experiment

Take the continuum contribution and its interference effect into consideration , we could determine not only the *magnitude* but also the *sign* of the phase. Furthermore, the cont. contr. and its int. effect will exert obvious influence on BR. measurement.

 $\psi' \rightarrow VP$

K^{*}(892)K +*c*.*c*.

continuum contribution can be more 10%

6.4pb⁻¹ ψ' con. Data @ 3.65 GeV

 $\psi' \rightarrow VP$

$$\sigma_{r.c.}(s) = \int_{0}^{x_m} dx F(x,s) rac{\sigma_{Born}(s(1-x))}{|1-\Pi(s(1-x))|^2}$$
 $\sigma_{exp}(W) = \int_{0}^{\infty} dW' \sigma_{r.c.}(W') G(W',W).$

Form factor evaluation shows the contribution from continuum can come up to 60% in total observed section at BES

 $@3.650 \text{GeV} \& \mathcal{L}=(6.42 \pm 0.24) \text{ pb}^{-1}$

@3.686GeV& $\mathcal{L}=(19.72 \pm 0.86)$ pb ⁻¹

 $7.4 \times (19.72/6.42) \sim 23$, \Rightarrow Con. /Tot. = $23/31 \sim 70\%$ consistent with theoretical expectation 60%

Studies of $Br(\psi' \rightarrow \omega \pi^0)$ and $\mathscr{F}_{\omega \pi^0}(s)$ are in progress

BES-II results (Preliminary)

VP Mode	Final states	N ^{fit}	N ^{fit}
		(@3.686GeV)	(@3.65GeV)
$\omega\pi^0$	$\pi^+\pi^-$ γγγγ	31.3 ±7.4	7.4 ±2.8
$K^{*0}K^{0+}c.c.$	$K\pi K_{S}(\pi^{+}\pi^{-})$	65.6 ±9.0	2.5 ± 1.9
K ^{*+} K ⁻ +c.c.	$K\pi K_{S}(\pi^{+}\pi^{-})$	9.6 ±4.2	0

VP Mode	B(ψ'→X)(10 ⁻⁵)	B (J/ψ→X)(10 ⁻⁴) (PDG2002)	Q _h (%)
$\omega\pi^0$	< 3.27	4.2 ± 0.6	< 7.8
$K^{*0}K^{0}+c.c.$	15.0 ±2.7	42 ±4	3.6 ±0.7
K*+K-+c.c.	2.9 ± 1.9	50 ±4	0.58 ±0.29

Suppressed w.r.t. 12% rule !!

$$\mathsf{B}_{\Psi' \to X} = \frac{\mathsf{n}_{\Psi' \to X \to Y}^{obs}}{\mathsf{N}_{\Psi'} \cdot \mathsf{B}_{X \to Y} \cdot \varepsilon^{\mathsf{MC}}}$$

VT	$B_{\psi' \rightarrow X} (10^{-4})$	$B_{J/\psi\to X}(10^{-3})$	O(0/)
mode	(BES-II)	(PDG2002)	$\mathcal{Q}_h(\mathcal{P}_0)$
ωf_2	$2.05 \pm 0.41 \pm 0.38$	4.3 ± 0.6	4.8 ±1.5
ρa_2	$2.55 \pm 0.73 \pm 0.47$	10.9 ± 2.2	2.3 ±1.1
$K^*\overline{K^*_2}$	$1.86 \pm 0.32 \pm 0.43$	6.7 ± 2.6	2.8 ±1.3
$\phi f_2'$	$0.44 \pm 0.12 \pm 0.11$	1.23 ±0.21 †	3.6 ±1.5

† This value from DM2 only

Suppressed!!

Accepted by PRD

12 % rule

Parameterization and phase study

VT -Parameterization ωf_2 : g +e ρa_2 : g +e $K^* \overline{K_2}^*$: g(1-s_g) - e (2-s_e) $\phi f_2'$: g(1-2s_g) - 2 e (1-s_e)

A.Seiden,H.F.-W. Sadrozinski and E.Haber : Phys.Rev.D38, 824 (1988)

 PP -Parameterization

 $\pi^+\pi^-$:
 E

 K^+K^- :($\sqrt{3}/2$)
 M +E

 $K_S K_L$: ($\sqrt{3}/2$)
 M

Limited data sample Phase undetermined **PP**-Parameterization $\pi^+\pi^-$: $(E+E_{C})$ $K^+K^-:(\sqrt{3}/2)$ M +(E+E_C) $K_{S} K_{L}$: ($\sqrt{3}/2$) M m Ť, Ť ≠ + **Continuum** Contribution

E.Haber and J.Perrier : Phys.Rev.D32, 2961 (1985)

C.Z.Yuan, P.Wang and X.H.Mo: PLB567, 74 (2003)

 $K^0 \overline{K}^0 = A'$

Too many parameters;

Few channels measured;

Parameterization and phase study

 $\Psi' \rightarrow K_{S} K_{I}$

Event Selection

1. Two Good charged tracks with net charge zero; 2. Decay length in transverse plane greater than 1.0 cm for $K_{\rm S}$ ID; 3. Total Energy of photon candidates less than 1 GeV.

 $\psi' \to K_S K_L$

BESII: first measurement for $B(\psi' \rightarrow K_S K_L)$

$$B_{\psi' \to K_{S}K_{L}} = \frac{n^{obs} / (\varepsilon \cdot f)}{N_{\psi'} \cdot B_{K_{S} \to \pi^{+}\pi^{-}}}$$
Quantity Value
$$n^{obs} \qquad 156 \pm 14$$
 $\varepsilon_{MC}(\%) \qquad 41.59 \pm 0.48$
 $f(\%) \qquad 74.6 \pm 3.5$
 $N_{\psi'}(10^{-6}) \qquad 14.0 \pm 0.7$
 $\mathscr{B}_{KS \to \pi^{+}\pi^{-}} \qquad 0.6860 \pm 0.0027$
 $\mathscr{B}_{\psi' \to KSKL}(10^{-5}) \qquad 5.24 \pm 0.47 \pm 0.48$

PRL 92, 052001 (2004)

B –	$n^{obs}/(\epsilon \cdot f)$	
$\mathbf{P}_{J/\Psi \to K_{S}K_{L}}$	$N_{J/\Psi} \cdot B_{K_{S} \to \pi^{+}\pi^{-}}$	
Quantity	Value	
n ^{obs}	2155 ± 4	45
<i>E_{MC} (%)</i>	38.69 ± 0	.23
f (%)	77.2 ± 3	3.4
$N_{\psi'}$ (10 %)	57.7 ± 2	2.7
$B_{Ks \rightarrow \pi^+ \pi^-}$	0.6860 ± 0.000	.0027
$B_{J/\psi \to Ks KL}(10^{-4})$	1.82 ± 0.04	± 0.13 ~4 σ diff.
$PDG2002: \mathscr{B}_{J/\psi \to K}$	$K_{S K L} = (1.08 \pm 0.14)$	$(4) \times 10^{-4}$
		PRD 69, 012003 (2004

$$\mathbf{J}/\psi$$
, $\psi' \rightarrow K_S K_L$

$$B_{\psi' \to K_{S} K_{L}} = (5.24 \pm 0.47 \pm 0.48) \times 10^{-5}$$

$$B_{J/\psi \to K_{S} K_{L}} = (1.82 \pm 0.04 \pm 0.13) \times 10^{-4}$$

$$\frac{B_{\psi' \to K_{S} K_{L}}}{B_{J/\psi \to K_{S} K_{L}}} = (28.8 \pm 3.7)\%$$

$$Q_{h} = \frac{B_{\psi' \to X}}{B_{J/\psi \to X}} = 12\%$$

$$B(\psi') \text{ enhanced!}$$

"12%" rule and mixing model"

Wang, Yuan and Mo: PLB574,41(2004); & hep-ph/0402227;

- $\circledast \psi' \rightarrow P P$ enhanced
- $\psi' \rightarrow VT$ suppressed
- $\psi' \rightarrow V P$ some

greatly suppressed

(such as $\rho \pi \& K^{*0} \mathbb{K}^0$)

J.L.Rosner : PRD64,094002(2001)

J/ $\psi = |1^3 S_1\rangle$, $\psi' \& \psi'' = |2^3 S_1\rangle \& |1^3 D_1\rangle$:

 $\begin{array}{l} \langle f | \psi' \rangle = \langle f | 2^{3}S_{1} \rangle cos\theta - \langle f | 1^{3}D_{1} \rangle sin\theta , \\ \langle f | \psi'' \rangle = \langle f | 2^{3}S_{1} \rangle sin\theta + \langle f | 1^{3}D_{1} \rangle cos\theta . \\ (\theta = 12^{\circ}) \end{array}$

Some recent studies indicate the S- and Dwave mixing model is a natural, calculable model ! It probably gives a unified explanation for all 12% rule violated decays

"12%" rule: $\begin{aligned} |\langle f | J/\psi \rangle / \langle f | 2^{3}S_{1} \rangle|^{2} &= \Gamma_{ee} (J/\psi) / \Gamma_{ee} (2^{3}S_{1}) \\ \Rightarrow \langle f | 2^{3}S_{1} \rangle \end{aligned}$

Mixing : $1.\langle f | \psi' \rangle = \langle f | 2^{3}S_{1} \rangle \cos\theta - \langle f | 1^{3}D_{1} \rangle \sin\theta$ $\langle f | \psi' \rangle \& \langle f | 2^{3}S_{1} \rangle \Rightarrow \langle f | 1^{3}D_{1} \rangle$ $2. \langle f | \psi'' \rangle = \langle f | 2^{3}S_{1} \rangle \sin\theta + \langle f | 1^{3}D_{1} \rangle \cos\theta$ $\Rightarrow \langle f | \psi'' \rangle \Rightarrow Br(f)$

The measurement at ψ " can be used to test the mixing model !

$$\mathbf{J}/\psi$$
, $\psi' \rightarrow K_S K_L$

$$\begin{split} |\psi'\rangle &= |2^3S_1\rangle\cos\theta - |1^3D_1\rangle\sin\theta \ ,\\ |\psi''\rangle &= |2^3S_1\rangle\sin\theta + |1^3D_1\rangle\cos\theta \ , \end{split}$$

Prediction on ψ " branching fraction:

 $0.12 \pm 0.07 \le 10^5 \times \mathcal{B}(\psi'' \to K_S^0 K_L^0) \le 3.8 \pm 1.1$

Wait for CLEOc/BESIII for the answer!

A solution of ψ ' enhancement Wang, Mo and Yuan, hep-ph/0402227

 $\Gamma(\psi'' \to f) = \frac{C_f}{M_{\psi''}^2} \left| \sin \theta R_{2S}(0) + \eta \cos \theta \right|^2,$

$\psi' \rightarrow J/\psi$ -Contained

Motivation: Improve Exp. Precision and Test The. Calculation

$XJ/\psi, J/\psi \rightarrow \mu^+ \mu^-$ Anything J/ψ	Both accepted by	$\gamma\gamma J/\psi, J/\psi ightarrow l^+ l^ \pi^0 J/\psi$	
Inclusive Method [BES-I]		Exclusive Method [BES-II]	
M. Suzuki: PRD63, 054021, (2001). Y. F. Gu & X. H. Li: PRD63, 114019 (2	hys. Rep. 194,1(1990). RD24, 2874(1981);D37, 1210 (1988)		
Important to measure $\psi' \rightarrow X$.	statistics measurements		
= 0.23 ± 0.07 : Disagrees with	transition amplitude can be tested by the high		
$B(\psi(2S) \rightarrow hadrons)/B(J/\psi \rightarrow B(\psi(2S) \rightarrow aaa + aay)/B(J/\psi \rightarrow aaa + aaaa + aaaa + aay)/B(J/\psi \rightarrow aaa + aaaa + aaa + aaa + aaaa + aaa + aaa + aaa + aaa + aaa + aaa + $	Theoretical prediction for charmonium hadronic		

 $\begin{array}{c} \eta J/\psi \\ \gamma \, \chi_{c1}, \, \chi_{c1} \rightarrow \gamma J/\psi \\ \gamma \, \chi_{c2}, \, \chi_{c2} \rightarrow \gamma J/\psi \end{array}$

Both accepted by PRD; hep-ex/0403023; hep-ex/0404020.

 $\pi^{0} J/\psi$ $\eta J/\psi$ $\gamma \chi_{c1}, \chi_{c1} \rightarrow \gamma J/\psi$ $\gamma \chi_{c2}, \chi_{c2} \rightarrow \gamma J/\psi$

J/ψ

Exclusive Method

• PCAC [G. A. Miller, Phys. Rep. 194,1(1990)]: <u>**R=0.0162</u>** (too small!)</u>

$$R = \frac{27}{16} (\frac{p_{\pi}}{p_{\eta}})^3 r^2, \quad r = (m_d - m_u) / (m_s - 0.5 \cdot (m_d + m_u))$$

QCD Multipole Expansion & BTG potential model

[Y. P. Kuang, PRD24, 2874(1981), *ibid.* 37, 1210(1988)]

<u>R'=0.0025</u> <u>R''=0.0013</u>

$$R' \approx \left(\frac{m_e}{m_b}\right)^2 \cdot \left(\frac{p_\eta(\Upsilon')}{p_\eta(\psi(2S))}\right)^3 \cdot \left(\frac{f(\Upsilon')}{f(\psi(2S))}\right)^2$$
$$R'' \approx \left(\frac{m_e}{m_b}\right)^2 \cdot \left(\frac{p_\eta(\Upsilon'')}{p_\eta(\psi(2S))}\right)^3 \cdot \left(\frac{f(\Upsilon'')}{f(\psi(2S))}\right)^2$$

Summary

Studies are made for K^*K and \omega\pi channels, about which the cont. contr. and its interference are taken into account.

- For VT channel, ωf_2 , ρa_2 , $K^* K_2^*$ and $\phi f_2'$ are measured.
- **For PP channel,** $K_{S}^{0} K_{L}^{0}$ **is first observed in** ψ ' decay; and the precision is **improved** for $J/\psi \rightarrow K_{S}^{0} K_{L}^{0}$.

• $\psi' \rightarrow J/\psi$ -contained final states are studied to improve experimental precision and test theoretical predications.

- Test of 12% rule ;
- Study of phase between strong and EM amplitudes ;
- Prediction & Evaluation involving mixing model.

Thanks a lot ! 谢谢.

Search for ψ' , $J/\psi \rightarrow K_S K_S$

- CP violating process
- Test EPR paradox (Einstein-Podolsky-Rosen)
- MarkIII: 2.7M J/ ψ B(J/ $\psi \rightarrow K_{S} K_{S}$)< 5.2×10⁻⁶ (@90% C.L.)
- BESII: 58M J/ψ
 14M ψ'

Events selection

- 4 good charged tracks
- Q(sum) = 0
- $|\cos\theta| < 0.8$
- K_s decay length Lxy > 3 mm
- $|M_{\pi\pi} M_{K_s}| > 2 \sigma_M$

 $\psi', J/\psi \rightarrow K_{S} K_{S}$

2 circles $-1 \sigma \& 2 \sigma$ regions from MC

 $\psi', J/\psi \rightarrow K_{S} K_{S}$

Upper Limits (@95% C.L.)

R	J/ψ	$\psi(2S)$
n^{obs}	1	1
n_{UL}^{obs}	4.74	4.74
ε_{MC} (%)	20.74 ± 0.41	19.18 ± 0.39
ε_{trg} (%)	98.2 ± 0.2	96.5 ± 0.7
ε_{2nd} (%)	92.9 ± 4.5	96.2 ± 5.8
$N_{\psi(2S)}(10^6)$	57.7 ± 2.7	14.0 ± 0.7
${\cal B}(\dot{K}^0_S o \pi^+ \pi^-)$	0.6860 ± 0.0027	
${\cal B}(R o K^0_S K^0_S) <$	1.0×10^{-6}	4.6×10^{-6}

- •1st upper limit for $B(\psi' \rightarrow K_S K_S)$.
- •Higher sensitivity for $B(J/\psi \rightarrow K_S K_S)$ upper limit.

•Sensitivity insufficient for testing EPR paradox and CP violation. PLB (in press)

Event Selection

- **1. Four charged tracks with net charge zero;**
- **2.** $|\cos\theta| < 0.80$ for all tracks;
- **3.** PartID using TOF+dE/dx
- 4. At least 2 photon candidates for π^0 channels;
- 5. Remove $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$ background;
- 6. Kinematic fit (4C/5C), Prob>0.01.

$$J/\psi, \psi' \rightarrow \rho \pi$$

To measure $B(\psi " \rightarrow \rho \pi)$, the best way is to do the energy scan!

A solution of ψ ' suppress Wang, Yuan and Mo: PLB574,41(2003)

Missing $\rho\pi$ signal and/or enhanced $K^{*0}K^0$ signal indicate BRs at 10⁻⁴ level.

$\psi' \rightarrow J/\psi$ -Contained

J/ ψ -contained final state (XJ/ ψ , J/ $\psi \rightarrow \mu^+ \mu^-$) Inclusive Method [BES-I]			
Channel	$B_{XJ/\psi}$ / $B_{\pi\pi J/\psi}$ (%)	$B_{XJ/\psi}$ (%) $[B_{\pi\pi J/\psi} = (30.5 \pm 1.6)\%]$	
Anything J/ψ	$1.867 \pm 0.026 \pm 0.055$	$56.9 \pm 0.8 \pm 3.4$	
$\pi^0\pi^0 J/\psi$	$0.570 \pm 0.009 \pm 0.026$	$17.4 \pm 0.3 \pm 1.2$	
η <i>J/ψ</i>	$0.098 \pm 0.005 \pm 0.010$	$3.00 \pm 0.16 \pm 0.33$	
$\gamma \chi_{c1}, \chi_{c1} \rightarrow \gamma J/\psi$	$0.126 \pm 0.003 \pm 0.038$	$3.9 \pm 0.16 \pm 1.2$	
$\gamma \chi_{c2}, \chi_{c2} \rightarrow \gamma J/\psi$	$0.060 \pm 0.000 \pm 0.028$	$1.84 \pm 0.01 \pm 0.86$	

J/ ψ -contained final state ($\gamma\gamma J/\psi$, $J/\psi \rightarrow l^+l^-$) Exclusive Method [BES-II]			
Channel	$B_{\gamma\gamma J/\psi,\ J/\psi ightarrow \mu^+\mu^-}$ (%)	$B_{\gamma\gamma J/\psi,\ J/\psi ightarrow e^+e^-}$ (%)	Combine B _{yyJ/y} (%)
$\pi^0 J/\psi$	$0.147 \pm 0.019 \pm 0.013$	$0.139 \pm 0.020 \pm 0.013$	$0.143 \pm 0.014 \pm 0.013$
η <i>J/ψ</i>	$3.06 \pm 0.14 \pm 0.25$	$2.91 \pm 0.12 \pm 0.21$	$2.98 \pm 0.09 \pm 0.23$
$\gamma \chi_{c1}, \chi_{c1} \rightarrow \gamma J/\psi$	$9.11 \pm 0.24 \pm 1.12$	$8.73 \pm 0.21 \pm 1.00$	$8.90 \pm 0.16 \pm 1.05$
$\gamma \chi_{c2}, \chi_{c2} \rightarrow \gamma J/\psi$	$8.12 \pm 0.23 \pm 0.99$	$7.90 \pm 0.26 \pm 0.88$	$8.02 \pm 0.17 \pm 0.94$