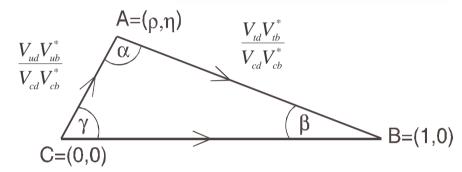
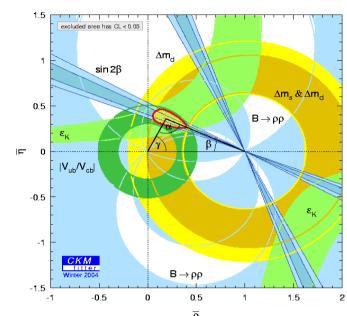
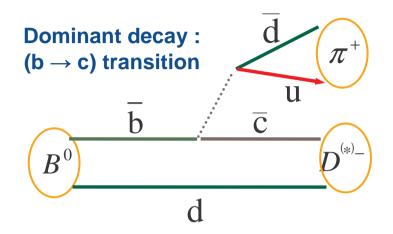
Status and Prospects for the measurement of angle $\boldsymbol{\gamma}$

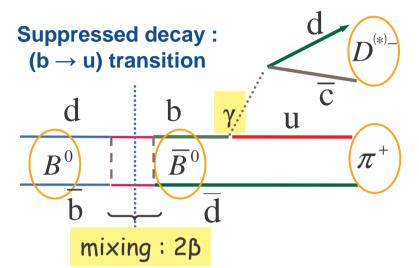
Marie Legendre – CEA/Saclay/DAPNIA
On behalf of the BaBar Collaboration





Status of CP violation in the B mesons system & angle \gamma

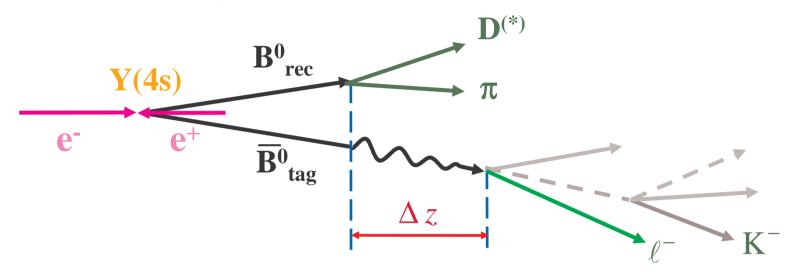

 $\underline{\text{Unitarity test:}} \quad V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$



- · CP violation well established in B mesons
 - measurement of $sin(2\beta) = 0.736 \pm 0.049$ (W.A. charmonium)
- · next step: need to overconstrain the triangle
- ways to measure γ :
 - $sin(2\beta+\gamma)$ with $B^0 \rightarrow D^{(*)} \pi$:
 - full reconstruction
 - partial reconstruction
 - γ with the decays $B^{\pm} \rightarrow D^{0}K^{\pm}$ (GLW and ADS methods)

CP violation in B⁰ \rightarrow D^(*) π

- interference between decays with and without mixing : relative weak phase $(2\beta+\gamma)$
- \bullet relative strong phase δ between both amplitudes
 - · no penguin contributions
 - small CP asymmetries (~ 2r^(*))


$$r^{(*)}$$
 is estimated using:
 $\mathcal{B}(B^0 \to D_s^{(*)+} \pi^-) + SU(3)$

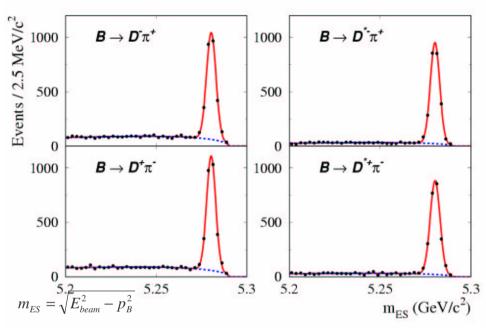
$$r = 0.021^{+0.004}_{-0.005}$$

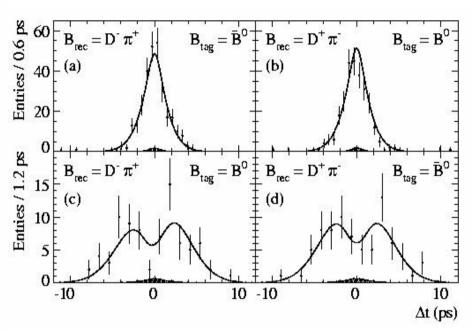
$$r^{(*)} = \left| \frac{A(\overline{B}^{0} \to D^{(*)-} \pi^{+})}{A(B^{0} \to D^{(*)-} \pi^{+})} \right| \approx 0.02$$

$$r* = 0.017^{+0.005}_{-0.007}$$

Time-dependent CP asymmetries

$$\begin{cases} P(B^0 \to D^{(^*)\mp}\pi^{\pm}, \Delta t) \propto \left\{1 \pm \cos(\Delta m_d \Delta t) + \left[\pm \alpha \mp c \pm b\right] \sin(\Delta m_d \Delta t)\right\} \\ P(\overline{B}^0 \to D^{(^*)\mp}\pi^{\pm}, \Delta t) \propto \left\{1 \mp \cos(\Delta m_d \Delta t) - \left[\mp \alpha \pm c \mp b\right] \sin(\Delta m_d \Delta t)\right\} \end{cases}$$


<u>Measured CP</u> parameters:


$$\begin{cases} a = 2r\sin(2\beta + \gamma)\cos(\delta) \\ b = 2r'\sin(2\beta + \gamma)\cos(\delta') \\ c = 2\cos(2\beta + \gamma)(r\sin(\delta) - r'\sin(\delta')) \end{cases}$$

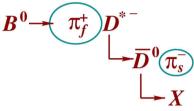
r' and δ ' take into account (b \rightarrow u) interference effects in the tag side

Full reconstruction of $B^0 \rightarrow D^{(*)} \pi$

82 fb⁻¹

Large sample, very few background

$$N(D\pi) = 5207 \pm 87 \text{ (purity=85\%)}$$

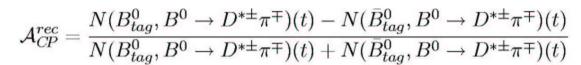

$$N(D*\pi) = 4746 \pm 78 \text{ (purity=94\%)}$$

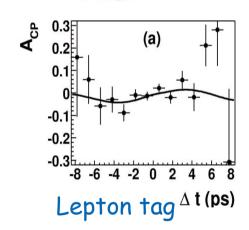
$$a = 2r\sin(2\beta + \gamma)\cos(\delta) = -0.022 \pm 0.038 \pm 0.020$$
$$a^* = 2r^*\sin(2\beta + \gamma)\cos(\delta^*) = -0.068 \pm 0.038 \pm 0.020$$

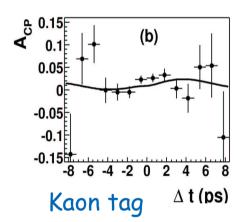
measurement limited by the statistics

Partial reconstruction of $B^0 \rightarrow D^*\pi$

76 fb⁻¹




- no attempt to reconstruct D^o
- · more events but more background


Kaon tags

1.82 1.83

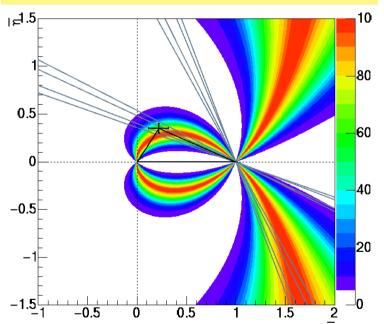
25160±320

$$a^* = 2r\sin(2\beta + \gamma)\cos(\delta^*) = -0.063 \pm 0.024 \pm 0.014$$

Deviates from 0 at 2.3 σ

(Hep-ex/0310037, accepted by PRL)

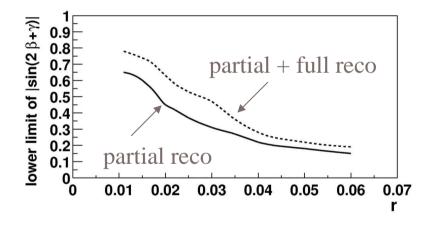
1.84 1.85 1.86 1.87 recoil mass (GeV/c^2)


Events/0.0007 (

Limits on $|\sin(2\beta+\gamma)|$

Method assuming SU(3):

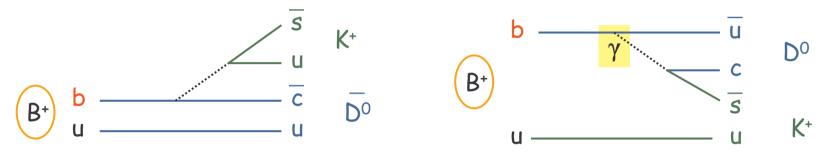
minimise a χ^2 : fit $|(\sin(2\beta+\gamma)|, \delta, \delta^*, r \& r^*)$ assume a 30% flat theoretical error for r and r*


$$|\sin(2\beta+\gamma)| > 0.74$$
 at 90 % CL $|\sin(2\beta+\gamma)| > 0.58$ at 95 % CL

Constraints in the plane ρ, η (only BaBar)

$\frac{\text{Method} \ll r^* \text{ scan } \gg}{\text{(only with } B^0 \to D^*\pi)}$

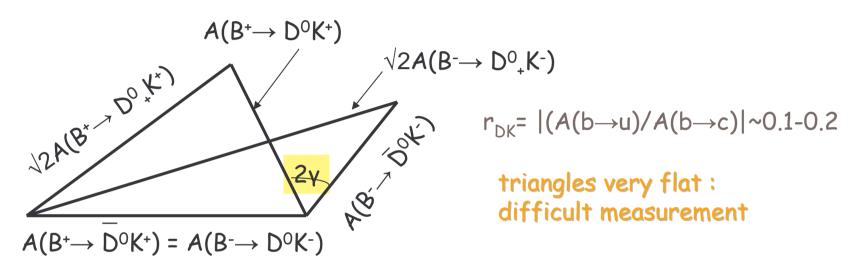
To avoid any assumption on r^* : Fit only $|(\sin(2\beta+\gamma)| \& \delta^* \text{ in the } \chi^2$



95% CL lower limit on $|\sin(2\beta+\gamma)|$ as a function of r*

(Hep-ex/0310037, accepted by PRL)

Measuring γ with B \rightarrow DK decays


 $^{\bowtie}$ γ from interferences between (b \rightarrow u) and (b \rightarrow c) decay amplitudes

- Interferences if D^0 and D^0 decay in the same final state f
 - if f is a CP eigenstate: Gronau-London-Wyler method (GLW): $D^0 \to \pi^+\pi^-$, K^+K^- (η_{CP} =+1), $K_S\pi^0$ (η_{CP} =-1)
 - if f is a non-CP eigenstate: Atwood-Dunietz-Soni (ADS) method: $D^0 \rightarrow K^+\pi^-$...

GLW: $B^+ \rightarrow D_{CP}K^+$: theoretical framework

 $|D^0_{\pm}\rangle = (1/\sqrt{2}) (|D^0\rangle \pm |\overline{D}^0\rangle) \Rightarrow$ relations between decay amplitudes can be represented in the complex plane by 2 triangles

$$R_{\pm} = \frac{Br(D_{\pm}^{0}K^{+}) + Br(D_{\pm}^{0}K^{-})}{Br(D_{\pm}^{0}K^{+}) + Br(\overline{D}_{\pm}^{0}K^{-})} = 1 + r^{2}_{DK} \pm 2r_{DK}\cos(\gamma)\cos(\delta)$$

$$A_{CP\pm} = \frac{Br(D_{CP\pm}^{0}K^{-}) - Br(D_{CP\pm}^{0}K^{+})}{Br(D_{CP\pm}^{0}K^{-}) + Br(D_{CP\pm}^{0}K^{+})} = \pm 2r_{DK}sin(\gamma)sin(\delta)/R_{\pm}$$

$B \rightarrow D_{CP}K$: analysis method

82 fb⁻¹

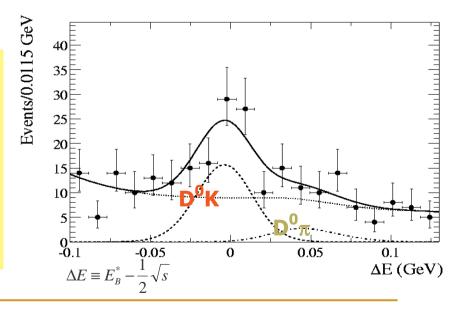
Use B \rightarrow DK decays, where D \rightarrow f_{CP+} (CP-even) or D \rightarrow f_{nonCP} and measure :

$$R^{K/\pi_{CP^{+}}} = \frac{Br(D^{0}_{CP^{+}}K^{+}) + Br(D^{0}_{CP^{+}}K^{-})}{Br(D^{0}_{CP^{+}}\pi^{+}) + Br(D^{0}_{CP^{+}}\pi^{-})}$$

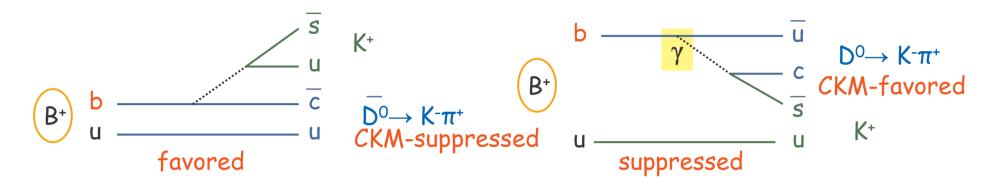
$$R^{K/\pi}_{CP+} = \frac{Br(D^{0}_{CP+}K^{+}) + Br(D^{0}_{CP+}K^{-})}{Br(D^{0}_{CP+}\pi^{+}) + Br(D^{0}_{CP+}\pi^{-})} \qquad R^{K/\pi}_{nonCP} = \frac{Br(\overline{D}^{0}_{nonCP}K^{+}) + Br(D^{0}_{nonCP}K^{-})}{Br(\overline{D}^{0}_{nonCP}\pi^{+}) + Br(D^{0}_{nonCP}\pi^{-})}$$

From this, extract: $R_{+}=R^{K/\pi}_{CP+}/R^{K/\pi}_{nonCP}$

Results:


$$R^{K/\pi}_{CP+} = (8.8 \pm 1.6 \pm 0.5)\%$$

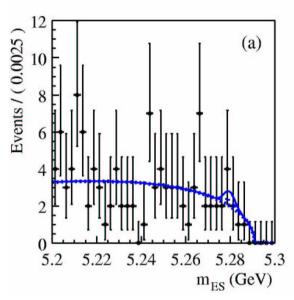
$$R^{K/\pi}_{nonCP}$$
= (8.31 ± 0.35 ± 0.20)%

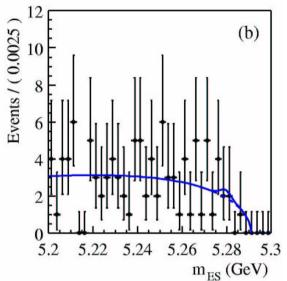

$$\Rightarrow$$
 R₊= 1.06 ± 0.19 ± 0.06

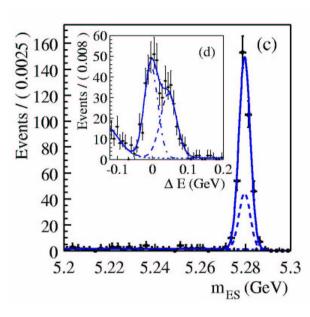
$$A_{CP+} = 0.07 \pm 0.17 \pm 0.06$$

Need more statistics

ADS method: $B \rightarrow D^0K$, $D^0 \rightarrow K^+\pi^-/K^-\pi^+$




$$R = \frac{Br(D_{K-\pi^{+}} K^{+}) + Br(D_{K+\pi^{-}} K^{-})}{Br(D_{K+\pi^{-}} K^{+}) + Br(D_{K-\pi^{+}} K^{-})} = r^{2}_{D} + r^{2}_{DK} + 2r_{D} r_{DK} cos(\gamma) cos(\delta)$$
favored decays


$$r_{DK} = |(A(B^- \to \overline{D}^0 K^-) / A(B^- \to D^0 K^-)| \sim 0.1-0.2$$

 $r_D = |(A(D^0 \to K^+ \pi^-) / A(D^0 \to K^+ \pi^-)| = 0.060 \pm 0.003^*$
mesured with $D^{+} \to D^0 \pi^+$, $D^0 \to K\pi$

ADS: Results

109 fb⁻¹

Measure no events for the suppressed decay : $N_{suppressed}$ = 1.1 ± 3.0 $N_{favored}$ = 261 ± 22

$$N_{\text{suppressed}} = 1.1 \pm 3.0$$

 $N_{\text{favored}} = 261 \pm 22$

Conclusion and prospects

- First steps to extract γ are promising:
 - $D^{(*)}\pi$ analysis well established: $|\sin(2\beta+\gamma)| > 0.58$ at 95 % CL
 - GLW and ADS: need more statistics
 - The presented analysis will be updated with more data
- Other channels to measure y:
 - D(*) ρ for sin(2 β + γ)
 - GLW with D^o decays into CP-odd
 - ADS with other final states
 - D*K, D*K* decays...