

Measurement of ϕ_3 using $B^{\pm} \to DK^{\pm}$ with $D \to K_S \pi^+ \pi^-$

Tim Gershon IPNS, KEK

June 7, 2004

Results presented today use 140 fb⁻¹ on Υ (4*S*) $\stackrel{\sim}{\equiv}$ 150 \times 10⁶ $B\bar{B}$ pairs

The Best 24 Hours

05/23/2004 19:38:27 Help -🚮 File Edit Plot Print Window Peak Luminosity 12.824 [/nb/sec] @07:52 Integrated Luminosity 969.40 [/pb] 5/22/2004 18:50 - 5/23/2004 18:50 JST 300 0 · 10⁻⁵ Lifetime 250 200 10-6 150 Beam Current [A] [min] 00 10-7 50 2 10-8 n _____200 Pressure 1.5 10-5 150 10-6 100 [Pa] 10-7 .5 50 \Rightarrow 10-8 0.4 Integ. Lum. [/fb] delivered & logged Luminosity [/hb/sec] .2 10 8 6 6 2 2 Spec. Lum. [%] 112 110 108 108 104 21^h0^m0^s 5/22/2004 0^h0^m 5/23 3h 6^h gh 12^h 15^h 18^h 5 Day: 22 Hour: (50/6 For 」 fill numbers ⊔ peak currs From Year: 2004 Month: 1 Days Plot E Hard Copy

- SVD 3 DSSD layers
 - $\sigma\sim$ 55 $\mu{
 m m}$ for 1 GeV/c @ 90°
- CDC 50 layers
 - $\sigma_p/p\sim$ 0.35% @ 1 GeV/c
 - $\sigma_{\pi}(dE/dx) \sim$ 7%
- TOF $\sigma_t \sim$ 95 ps
- ACC ($n = 1.01 \rightarrow 1.03$) K/π separation up to 3.5 GeV/c
- Csl $\sigma_E/E_\gamma \sim$ 1.8% @ 1 GeV
- KLM 14 RPC layers
- 1.5 T magnetic field

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

where A, λ , ρ , η are Wolfenstein parameters

From unitarity ($V_{CKM}^* V_{CKM} = 1$):

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

The Unitarity Triangle

$$\begin{array}{c}
\phi_1 \leftrightarrow \beta \\
\phi_2 \leftrightarrow \alpha \\
\phi_3 \leftrightarrow \gamma
\end{array}$$

- Can access ϕ_3 via interference between $B^- \to D^0 K^-$ & $B^- \to \overline{D}^0 K^-$
- Reconstruct D in final states accessible to both D^0 and \bar{D}^0

eg. $D_{CP}K^-$ (Gronau, London, Wyler method)

• Can use multibody final states, eg. $K_S \pi^+ \pi^-$ (first noted by Atwood, Dunietz, Soni)

• Consider $\bar{D}^0 \to K_S \pi^+ \pi^-$

 \rightarrow define amplitude at each Dalitz plot point as $f(m_+^2,m_-^2)$ where $m_+=m_{K_S\pi^+},\,m_-=m_{K_S\pi^-}$

• Consider
$$D^0 \to K_S \pi^+ \pi^-$$

 \rightarrow amplitude at each Dalitz plot point is $f(m_{-}^2, m_{+}^2)$

- $\left| f(m_+^2, m_-^2) \right|$ can be measured using flavour tagged *D* mesons
- Consider $B^+ \rightarrow (K_S \pi^+ \pi^-)_D K^+$ \rightarrow amplitude is $f(m^2_+, m^2_-) + re^{i(\delta + \phi_3)} f(m^2_-, m^2_+)$

• Consider
$$B^- \rightarrow \left(K_S \pi^+ \pi^-\right)_D K^-$$

 \rightarrow amplitude is $f(m_-^2, m_+^2) + re^{i(\delta - \phi_3)} f(m_+^2, m_-^2)$

• Can extract (r, δ, ϕ_3) from B^+ & B^- data

Generated 50,000 decays with $r = 0.125, \delta = 0, \phi_3 = 70^{\circ}$

$B^{\pm} \rightarrow (K_S \pi^+ \pi^-)_D K^{\pm}$ Selection

 $M_{+} = f(m_{+}^{2}, m_{-}^{2}) + re^{i(\delta + \phi_{3})}f(m_{-}^{2}, m_{+}^{2})$

 $M_{+} = f(m_{+}^{2}, m_{-}^{2}) + re^{i(\delta + \phi_{3})}f(m_{-}^{2}, m_{+}^{2})$

 $M_{-} = f(m_{-}^2, m_{+}^2) + re^{i(\delta - \phi_3)} f(m_{+}^2, m_{-}^2)$

- Fit Dalitz plot distribution of tagged *Ds*
- Tag using charge of π_s in $D^{*+} \to D^0 \pi_s^+$
- Used *model* defines phase variation of $f(m_{+}^{2}, m_{-}^{2})$

Tim Gershon

June 7, 2004

Resonance	Amplitude	Phase (°)
$K^{*}(892)^{-}\pi^{+}$	1.656 ± 0.012	137.6 ± 0.6
$K^{*}(892)^{+}\pi^{-}$	$(14.9 \pm 0.7) imes 10^{-2}$	325.2 ± 2.2
$K_0^*(1430)^-\pi^+$	1.96 ± 0.04	357.3 ± 1.5
$K_0^*(1430)^+\pi^-$	0.30 ± 0.05	128 ± 8
$K_2^*(1430)^-\pi^+$	1.32 ± 0.03	313.5 ± 1.8
$K_2^{*}(1430)^+\pi^-$	0.21 ± 0.03	281 ± 9
$K^{\overline{*}}(1680)^{-}\pi^{+}$	2.56 ± 0.22	70 ± 6
$K^*(1680)^+\pi^-$	1.02 ± 0.2	103 ± 11
$K_s ho^{O}$	1.0(fixed)	0(fixed)
$K_s \omega$	$(33.0 \pm 1.3) imes 10^{-3}$	114.3 ± 2.3
$K_s f_0(980)$	0.405 ± 0.008	212.9 ± 2.3
$K_s f_0(1370)$	0.82 ± 0.10	308 ± 8
$K_s f_2(1270)$	1.35 ± 0.06	352 ± 3
$K_s \sigma_1$	1.66 ± 0.11	218 ± 4
$K_s \sigma_2$	0.31 ± 0.05	236 ± 11
non-resonant	6.1 ± 0.3	146 ± 3

 $M_{\sigma_1} = 539 \pm 9$ MeV, $\Gamma_{\sigma_1} = 453 \pm 16$ MeV

 $M_{\sigma_2} = 1048 \pm$ 7 MeV, $\Gamma_{\sigma_2} = 109 \pm 11$ MeV

Fit B^{\pm} samples separately, float $re^{i(\delta \pm \phi_3)}$

$$B^{\pm} \rightarrow \left(K_S \pi^+ \pi^- \right)_D K^{\pm}$$

146 candidate events (112 \pm 12 signal)

 $B^{\pm} \rightarrow \left(\left(K_S \pi^+ \pi^- \right)_D \pi^0 \right)_{D^*} K^{\pm}$ 39 candidate events (34 ± 6 signal)

PRELIMINARY Results from simultaneous fits $(B^+ \& B^-)$ (Errors from likelihood curves)

*	r	=	0.31	\pm	0.11		*	r	=	0.34	\pm	0.14
*	ϕ_{3}	=	86°	\pm	17°		*	ϕ_{3}	=	51°	\pm	25°
*	δ	=	168°	\pm	17°		*	δ	=	30 2°	\pm	25°

	$B^{\pm} \to DK^{\pm}$	$B^{\pm} \to D^* K^{\pm}$
Background shape	4.6°	1.3°
Background fraction	0.1°	0.6°
Efficiency shape	3.5°	0.8 °
Momentum resolution	2.5°	2.5 °
$B^{\pm} \rightarrow D\pi^{\pm}$ test sample bias	11°	11°
Total	13°	11°

$$f(m_{+}^{2}, m_{-}^{2}) = \left| f(m_{+}^{2}, m_{-}^{2}) \right| e^{i\phi(m_{+}^{2}, m_{-}^{2})}$$

- Fit to flavour tagged D sample measures $\left|f(m_+^2, m_-^2)\right|$ BUT $\phi(m_+^2, m_-^2)$ model-dependent
- Estimate model uncertainty by varying model

Fit model	$(\Delta \phi_3)_{max}$
Only K^*, ρ, ω, f_0 non-resonant	9.9°
Meson formfactors $F_r = F_D = 1$	3.1°
Constant BW width $\Gamma(q^2)$	4.7°
No non-resonant amplitude $a_{NR} = 0$	0.4°
No $\sigma(500)$	0.7°
Total	11 °

• Consider *CP*-tagged *D* mesons decaying to $K_S \pi^+ \pi^ \rightarrow$ amplitude is $f(m_+^2, m_-^2) \pm f(m_-^2, m_+^2)$

• FUTURE: use CP tagged D mesons from $c\tau$ factory $(\psi'' \to D\bar{D})$ \hookrightarrow measure $\phi(m_+^2, m_-^2) \Rightarrow$ remove model uncertainty

Extraction of ϕ_3

Avoid using fit likelihood errors \rightarrow construct PDF for $(r, \phi_3, \delta)_{true}$ using Toy MC

$$B^{\pm} \rightarrow (K_{S}\pi^{+}\pi^{-})_{D}K^{\pm}$$

$$\phi_{3} > 0 \text{ with } > 94\% \text{ probability}$$

$$PRELIMINARY$$

$$B^{\pm} \rightarrow (K_{S}\pi^{+}\pi^{-})_{D}K^{\pm}: \phi_{3} = 86^{\circ} \pm 20^{\circ}(49^{\circ})$$

$$B^{\pm} \rightarrow ((K_{S}\pi^{+}\pi^{-})_{D}\pi^{0})_{D^{*}}K^{\pm}: \phi_{3} = 51^{\circ} \pm 47^{\circ}(82^{\circ})$$

$$Combined:$$

$$\phi_{3} = 81^{\circ} \pm 19^{\circ}(46^{\circ})_{\text{stat}} \pm 13^{\circ}_{\text{sys}} \pm 11^{\circ}_{\text{model}}$$

$$Errors \text{ are } 68\% (95\%) \text{ confidence limits}$$

$$D^{0} = 0$$

Combined ϕ_3

- Novel technique to extract ϕ_3 applied to 140 fb⁻¹ of Belle data
- First PRELIMINARY direct measurement of ϕ_3

$$\phi_3 = 81^{\circ} \pm 19^{\circ} (46^{\circ})_{stat} \pm 13^{\circ}_{sys} \pm 11^{\circ}_{model}$$

• Model-independent approach exists using $c\tau$ factory data