Report from Snowmass Linear Collider WG

R. Brinkmann, TESLA Coll. Meeting Frascati 5 Nov. 2001

The Future of Particle Physics

Snowmass 2001 • June 30 - July 21

Snowmass Village, Colorado

Organized by the & Division of Physics of Beams of the American Physical So

Chris Quigg (FNAL)ce-chair Sally Dawson (BNL) Paul Grannin (Stony Brook) David Gross (TTP/UC38) Joseph Lykken (FNAL) Hinoshi Murayama (UC Breheley) Chan Joshi (UCLA) René Ong (DCLA) Natalie Roe (LRNL) Heidi Schellman (Northwatters) Maria Spiropulu (Chiongs)

Ronald Davidson (PP724) Alex Deagt (Marolas Gerry Dugan (Crimell) Norbert Holtkamp (SN) Thomas Roser (JINL) Ronald Ruth (SLAC) John Seeman /SLACI James Strait (FNAL)

www.snowmass2001.org

ort Courses & Lectures on Critical Technologies Organized by the IEEE Nuclear & Plasma Sciences Society

Outreach & Education Progra

et: Cynthia M. Szzama, Fermi National Accelerator Laboratory P.O. Box 500, M.S. 122, Batavia, Elinois 60510-0500 E-mail: agrama@fnal.gov Telefax: 680/840-8589

M3 Snowmass Working Group on Linear Colliders

Summary Part-I

Conveners: R. Brinkmann, T. Raubenheimer and N. Toge

- Attendance during M3 sessions : ~ 30 40 colleagues
- # of scheduled sessions: 11
- # of M3 talks: 33
- Joint sessions with T1, T2, T5, T6, T9 and M1
- Several sessions/meetings/panel discussions organised by E3

M3 Group Schedule Overview

Tue. 7	7/3	Linac Technology	
Wed. 7	7/4	E3 – M3 Design overview and	Holiday
		luminosity performance	
Thu.	7/5	T1 background at e+e- LC	
Fri. 7	7/6	Damping rings	T1 gamma-gamma IR
Sat.	7/7	M3 – T5 Emittance preservation	M3 – T5 cont'd
Mon. 7	7/9	M3 – T6 tunneling and	M3 – T6 cont'd
		conventional facilities	
Tue. 7	7/10	Discus.: MPS, DR experiments	
Wed. 7	7/11	Beam delivery design	T1,T2 on IR magnets
Thu. 7	7/12	Plenary	M3 – T5 Emit. Preserv. Cont'd
Fri. 7	7/13	High energy limitations and upgrade paths	
Sat. 7	7/14	M3 – T1 – T6 active stabilization	M3 – T1 – T6 cont'd
Mon. 7	7/16	RF structures and HOM	T group session
Tue. 7	7/17	M1 – M3 high-E Muon coll.	T group session
Wed. 7	7/18	Summary preparation	Summary Preparation

Summary: Reinhard / Tor / other

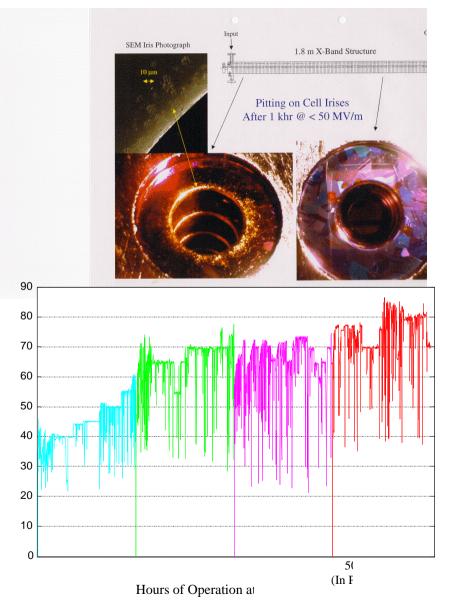
Linear Collider parameter overview

	NLC/JLC	JLC-C	TESLA	CLIC	SLC
f / GHz	11.4	5.7	1.3	30	2.9
E-cms /	500 - 1000	500	500 - 800	3000 -	100
GeV				5000	
g / MV/m	50	36	23 – 35	150	~20
Lumi / 10 ³⁴	2 – 3.4	0.7	3.4 – 5.8	~10	.0003
Power p.	6.6 - 13.7	3.2	11.2 – 17	~15	0.04
beam / MW					
_y at IP / nm	2.7 – 2.1	4.4	5 – 2.8	1	500
Site length /	30	~25	33	~35	3.5
km					
Site power /	180 – 300	130+x	140 – 200	~300?	
MW					
Cost [§]	~3.5B\$		3.14B?+7,000		?
(stage-I)			p.y.		

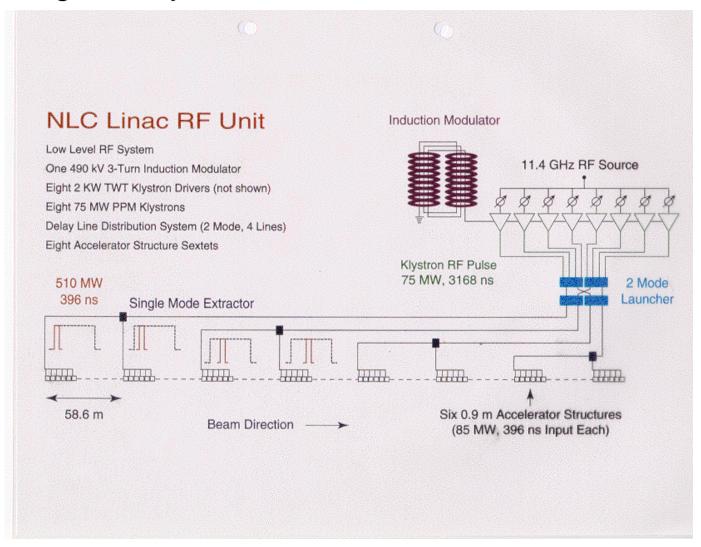
§ no escalation and contingency included

Development of NLC/JLC X-Band rf components (modulators, klystrons, pulse compression, acc. cavities) over past decade

- Integrated system test of prototype components with beam at NLCTA 1997
 €_{acc} = 40MV/m, beam loading compensation (△E/E = 0.3%) ok
- ASSET: verification of HOM damping & detuning, rf-BPM

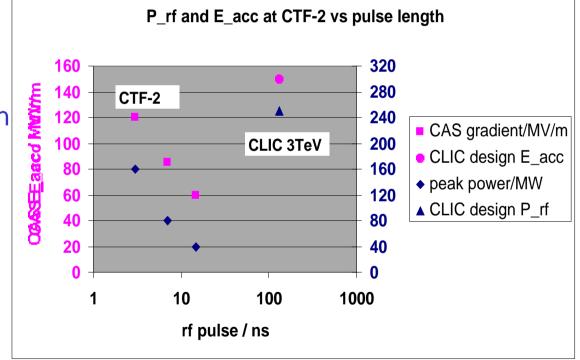

Ongoing R&D program:

- Accelerator cavities for higher gradients (55MV/m loaded, 70MV/m unloaded)
 €liminate iris damage problem with new design (shorter 1.8m €.9m, group velocity 12%c €...5%c)
- Improve power efficiency and reduce cost
 &-pack of 75MW ppm focused 75MW klystrons, solid state inductive stack modulator, DLDS rf distribution/compression scheme


RF breakdown/Iris damage problem

Unloaded Acceleration Gradient (MV/m)

- Reduction of v_g 12%→3%, 1.8m→0.6m structures (latest news)
- After successful long-term survival test, need to modify phase advance/cell and add HOM detuning & damping
- Also under study: input coupler & cell layout, short standing wave cavities



Integrated system test of one NLC linac unit 2004

CLIC R&D towards very high gradients

- CTF3 (-2006): demonstrate drive beam concept and main linac acceleration at 30GHz/150MV/m
- Near term: investigate (theoretical & experimental) rf breakdown and iris damage

TESLA: critical issues discussed at and after Snowmass 1. S.c. linac technology

- Insufficient operation experience at TTF linac with TESLA500 design parameters can't deny: only few days at max. g=22...23MV/m, never simultaneously max. g with full pulse length and beam current
- G=35MV/m & superstructures needs years R&D and tests at linac essentially correct
- Dark current critical (radiation in the tunnel) *correct, limit is rather heat load than radiation*
- Modified HOM damping needs beam tests (2.58GHz mode) negotiable, but if we understand problem & solution, why don't we modify couplers a.s.a.p.?

2. Beam dynamics

- Alignment tolerances vary with correlation length: 0.5mm (cav.) →0.14mm (module)→0.05mm (/4) have modified alignment model for simulation studies: 0.3mm cav. to module axis, 0.2mm module to ref. point, 0.02mm ref. points over 500m from hydrostatic leveling system; can tune out static effect of W_trans with bumps, reduce dynamic (jitter) effect with BNS damping
- Structure tilt tolerance 0.1mrad from RF kicks no consensus yet, should be cured by orbit correction (DF or shunt methods) with 10μm BPM resolution
- Kicks from input and HOM couplers *under study, consequences not yet perfectly clear (to me)*

Beam dynamics (cont'd)

Effect of correlated on luminosity ("banana effect") much more severe than uncorrelated (kink instability with high D_y) very painful, find up to 20% lumi loss from corr. Δε/ε=1%. Half of loss recovered with IP feedback "on", more recovered with empirical IP steering; can cure static corr. Δε and limit dynamic Δε/ε<1%. Design lumi marginally ok, but smaller bunchlength desirable

3. Other subjects

- Damping ring design considered risky and studies incomplete; e.g. space charge, beam-ion, electron cloud, kicker design and tolerances more attention on DR would be good, but I don't see fundamental problems in the present design
- Positron source viewed as unproven concept; operational complications; "energy gap" 200...300 GeV photon production and conversion needs proof??? Advantages (heat load, no extra drive linac, potential for polarised e+, outweigh disadvantages); energy gap can be closed by half rep-rate, but then only half lumi
- Commissioning and operation strategies, reliability, failure handling, machine protection,... *broad field with much too little work done yet*