Status of the Photo Injector Test Facility at DESY Zeuthen

I. Bohnet for the PITZ-Collaboration

Contents

- 1. Goals
- 2. Layout and parameters
- 3. Technical and scientific plans
- 4. Status and schedule

1 Goals

Photo Injector Test facility at DESY Zeuthen:
(BESSY, DESY, MBI, TU-Darmstadt)
in strong collaboration with the INFN Milano, PI Yerevan,
INRNE Sofia, INR Troisk, TESLA collaboration, etc.

- operate a test facility for laser driven rf guns and photo injectors for free electron lasers and future linear colliders:
 - 1. extremely small transverse emittance ($\approx 1\pi$ mm mrad @ 1 nC)
 - 2. stable production of short electron bunches
 - 3. small energy spread ($\approx 1\%$ at 5 MeV)
- extensive R&D on photo injectors (pi) independent from TTF operation
- detailed comparison between experimental results and simulations
 - benchmark theoretical understanding of pi's
 - 2. optimization of pi for different applications
- conditioning of rf guns for the operation at TTF-FEL
- test of new components, i.e. laser, cathodes, ...
- developments for TESLA: flat beam and polarized electron sources

2 Layout and parameters

How to obtain small emittances?

- longitudinal flat-top laser pulse
- · cavity has symmetric rf coupler
- free longitudinal position of the solenoid

Parameters of the photo injector test facility:

charge per bunch	≈1 nC	pulse train length	≤ 800 μs
resonance frequency	1.3 GHz	pulse train rep. rate	1 – 10 Hz
peak rf power (in preparation)	5 MW (10 MW)	micro pulse rep. rate (in preparation)	1 MHz (9 MHz)
Gradient at the cathode	≈50 MV/m		
electron beam energy (with booster)	≈5 MeV (≈30 MeV)		

3 Technical and scientific plans

- commissioning of the klystron
 interlock, hv and rf conditioning
- laser system (1st stage is operational → MBI)
 ⇒ adjustment of laser beam line, etc.
- cathode system → INFN Milano
- development and improvement of diagnostics:
 - EMSY ⇒ emittance measurement system
 - Cherenkov radiator ⇒ bunch length, investigations on Aerogel in vacuum → BESSY
 - optical readout ⇒ screen diagnostics
 - Laser diagnostics ⇒ virtual cathode
- Software
 - Automatic Conditioning Program (ACP)
 - Data Acquisition (DAQ)
 - 3. simulations to optimize gun settings
 - comparison of simulation programs
 → TU-Darmstadt

The RF system for PITZ

schematic:

frequency:

1.3 GHz

peak rf power:

5 MW (10 MW in preparation)

length of rf pulse:

~900 µs

repetition rate:

1 - 10 Hz

HVPS

capacitor bank

bouncer

pulse transformer

cathode of the MBK 7H1801

principle sketch of a multi beam klystron

The new emittance measurement system at PITZ

| normalized transverse emittance: $e_x^n = bg\sqrt{s_x^2 s_x^2 - cov^2(x, x')}$

emittance range: ~1-10 π mm mrad

E"= BX/ <x1><x1>> - <xx/>

cov(x, x')

hardware:

actuators:

vertica

multislit masks:

horizontal

successive increase of rf power in the cavity

 \Rightarrow High gradients on the cathode (> 35 MV/m)

- ACP controls rf power → low level rf
- react appropriatly on interlock signals
 → slow/fast signals
- · store data for deeper analysis

4 Status and schedule

Status (October 2001):

- infrastructure ready
- installation of all hardware components mainly finished
- first stage of laser system operational

Schedule:

- commissioning of rf system in November 2001
- · start operation of the facility as soon as possible
 - ⇒ conditioning of the gun
 - ⇒ production of first photoelectrons
- measurement program in 2002
- installation of the booster cavity in 2003