# Status and perspectives of Phi-factories

C. Biscari

### e<sup>+</sup>e<sup>-</sup> annihilation cross-section up to 1 TeV



The annihilation production cross section in e<sup>+</sup>e<sup>-</sup> collisions and the necessary integrated luminosity scale with Energy:

$$L \propto \frac{1}{\sigma} \propto E^2$$



## Different PHI factory designs



UCLA – QIR (1991) (quasi isochronous compact ring)



KEK design – 1991 Two superposed rings



Novosibirsk butterfly (since 80ies) ROUND COLLIDING BEAMS



Turkish design (1999) LINAC to RING





## Design criteria of DAΦNE

$$L = \frac{f_{coll}}{4\pi} \frac{N^+ N^-}{\sigma_x^* \sigma_y^*}$$

Luminosity Collision frequency  $f_{coll} \sim 300 \text{ MHz}$ Particles per bunch  $N \sim 3 \ 10^{10}$ Beam dimensions

 $L \sim 10^{32} \text{ cm}^{-2} \text{ sec}^{-1}$  $\sigma^*_{x/v} \sim 1$ mm / 10 $\mu$ 

High current per bunch short distance between bunches small beam size at collision - flat beam

Double ring and multibunch operation Crossing angle at IP Rf frequency determines the distance between bunches

## DAΦNE MAIN RINGS layout



## DAΦNE challenges

(all enhanced by the low energy)

High currents

High densities

Long damping time

Strong Beam-beam effect

## DAΦNE challenges

(all enhanced by the low energy)

High currents

Electron ring :  $I_{max} = 2.4 \text{ A}$ 

Positron ring :  $I_{max} = 1.5 A$ 

Feedback systems
Impedance minimisation
Rf cavity design HOM free



### Longitudinal feedback for multibunch instabilities



Bunch by bunch feedback Time domain based on DSPs (digital signal processors)



Feedback cavity kicker (f<sub>o</sub> = 3.25 f<sub>rf</sub>)
Waveguide overloaded cavity
Broadband
Large bandwidth (180 MHz)
Power dissipated in external loads

Adopted also by KEK-B, PLS, BESSY II, CESR, PEP II, BEPCII, ...

## Transverse feedbacks for resistive wall instability



Striplines matched @ 50 Ohm Characteristic impedance



Different BPMs can be used as pick-ups

Operational from beginning 2000 Every step in current needs feedback tune-up

## DAΦNE challenges

(all enhanced by the low energy)

Coupling correction (0.2 %)

High densities

Low beta @IP (high chromaticity)

Low impedance to limit bunch lengthening And transverse blowup over Microwave instability threshold

### coupling compensation in IR



Quads tilted by 
$$\frac{1}{2B\rho}\int_{IP}^{s_q}Bds+\delta\theta_q$$

#### Bunch length and impedance

$$\sigma_z[cm] = 4.36 \times \left(\frac{I[mA]}{V[kV]}\right)^{1/3}$$
; for positron ring

$$\sigma_z[cm] = 5.50 \times \left(\frac{I[mA]}{V[kV]}\right)^{1/3}$$
; for electron ring





Positron ring: Z/n = 0.6 Ohm

Electron ring: Z/n = 1 Ohm

(ICE presence)

## Examples of vacuum chamber parts

#### Titanium sublimation pumps





Splitter vacuum chamber

Wiggler positions



Asymmetric slots for vacuum pumping Avoid overlap with beam spectrum

## DAΦNE challenges

(all enhanced by the low energy)

Long damping time

Wigglers to increase radiation 4 (1.8 T) wigglers (8m) per ring

DAFNE is the 1° ring with optics based on wiggler presence

#### ARC with wigglers





## Damping time

$$\alpha_{x} = \frac{C_{\alpha} E^{3}}{C} (I_{2} - I_{4})$$

$$\alpha_{y} = \frac{C_{\alpha} E^{3}}{C} I_{2}$$

$$\alpha_{y} = \frac{C_{\alpha} E^{3}}{C} I_{2}$$

$$\alpha_{z} = \frac{C_{\alpha} E^{3}}{C} (2I_{2} + I_{4})$$

$$B_{D} = 1.7 \text{ Tm}$$

$$\rho_{D} = 1.4 \text{ m} \quad B_{D} = 1.4 \text{ T}$$

$$\rho_{W} = 0.9 \text{ m} \quad B_{W} = 1.8 \text{ T}$$

|                                   | Dipoles | Dipoles +<br>wigglers |
|-----------------------------------|---------|-----------------------|
| I <sub>2</sub> [m <sup>-1</sup> ] | 4.5     | 10.2                  |
| $\tau_{x}$ [msec]                 | 80      | 35                    |
| N <sub>turns</sub>                | 240 000 | 105 000               |

## DAΦNE challenges

(all enhanced by the low energy)

Large emittance (wigglers)

Working point choice

Non linear dynamics driven by Non linearities + sextupoles

Strong Beam-beam effect

#### Beam – beam effect





$$\xi_{x} = \frac{r_{e}}{2\pi\gamma} \frac{N\beta_{x}}{\sigma_{x} \left(\sigma_{x} + \sigma_{y}\right)} \approx \frac{r_{e}}{2\pi\gamma} \frac{N}{\varepsilon_{x}}$$

$$\xi_{y} = \frac{r_{e}}{2\pi\gamma} \frac{N\beta_{y}}{\sigma_{y} \left(\sigma_{x} + \sigma_{y}\right)} \approx \xi_{x} \sqrt{\frac{\beta_{y}}{\kappa \beta_{x}}}$$

#### Beam - beam force

$$Q_{x,y} = Q_{x,y} + \xi_{x,y}$$

#### Linear tune shift < 0.04

- Large emittance
- Demand on damping time
- Demand on dynamic aperture

## **Working Point Choice**



## DAΦNE main parameters

| Energy per beam                 | Е                               | 510 <i>MeV</i>                                        |  |
|---------------------------------|---------------------------------|-------------------------------------------------------|--|
| Luminosity                      | L                               | 1.5·10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> |  |
| Circumference                   | С                               | 97.69 <i>m</i>                                        |  |
| Emittance                       | 3                               | 0.4·10 <sup>-6</sup> rad m                            |  |
| Coupling                        | κ                               | 0.3 % - 1% (out-in collision)                         |  |
| Beta functions at IP            | $\beta_{x}$ */ $\beta_{y}$ *    | 1.8 / 0.019 <i>m</i>                                  |  |
| Crossing angle at IP            | $\theta_{x}^{*}$                | ±12.5 mrad                                            |  |
| Beam size at IP                 | $\sigma_{x}^{*}/\sigma_{y}^{*}$ | 0.85 / 0.005 <i>mm</i>                                |  |
| Bunch length                    | $\sigma_{_{\! z}}$              | 1.5 – 2.5 <i>cm</i>                                   |  |
| Betatron tunes e-               | $v_{x}/v_{y}$                   | 5.11 / 5.17                                           |  |
| Betatron tunes e+               | $v_{x}/v_{y}$                   | 5.14 / 5.19                                           |  |
| Momentum compaction             | $oldsymbol{lpha_{ m c}}$        | 0.024                                                 |  |
| Number of bunches               |                                 | 110 (over 120)                                        |  |
| RF frequency                    | f <sub>RF</sub>                 | 368.26 <i>MHz</i>                                     |  |
| Beam currents @L <sub>max</sub> | +                               | 1.3/1.4 <i>A</i>                                      |  |

#### 



## DA⊕NE total integrated luminosity



DA

NE
shared
luminosity
by three
Experiments:

KLOE FINUDA DEAR





#### Near term future

- 2006 Final KLOE run
  - Shutdown for FINUDA installation
  - FINUDA run
- 2007 FINUDA run (up to 1 fbarn-1)
  - Shutdown for SIDDHARTA installation
  - SIDDHARTA run
- 2008 SIDDHARTA run (up to 1 fbarn-1)
  - Shutdown for FINUDA installation
  - FINUDA run (up to 2 fbarn-1)

## Present Luminosity limits due to:

- Bunch lengthening + vertical size blow up, specially e-ring
- E+ current threshold (e- cloud)
- Beam-beam limit
- Beam lifetime dropping at higher current
- Parasitic crossing beam-beam

# Foreseen upgrades to increase luminosity during next runs

- ICE shieldings => decrease of e- vacuum chamber impedance => shorter bunches
- Short pulse injector kickers => increase of injection efficiency and positron current
- Remodelling of wiggler poles => increase of beam lifetime
- Ti coating of e+ vacuum chamber => increase of positron current
- Optimisation of feedbacks systems, IR set ups (new experiments), ...

#### STUDIES FOR NEW DAFNE INJECTION KICKERS



Schematic of the present injection kicker system and kicker structure magnetic switch



2 kickers for each ring  $\phi \sim 10 \text{mrad}$  **Beam pipe radius = 44 mm** Kicker length = 1m





# Extra possibilities

- Crab cavity
- Longitudinal modulated vertical β\* by Rf quadrupole

## Physics prospects at LNF after DAΦNE

- K physics (<u>www.lnf.infn.it/kloe/kloe2</u>)
- Neutron antineutron form factor
   (www.lnf.infn.it/conference/nucleon05/)
   Workshop on Nucleon Form Factors LNF, 12-14 October, 2005
- Physics of γ γ (www.roma1.infn.it/people/bini/roadmap)
- Nuclear physics (http://www.lnf.infn.it/committee/talks/31talks/31Feliciello.pdf)
- Kaonic physics
   (<a href="http://www.lnf.infn.it/esperimenti/dear/LOI\_FINAL\_15sept.pdf">http://www.lnf.infn.it/esperimenti/dear/LOI\_FINAL\_15sept.pdf</a>,
   <a href="http://www.lnf.infn.it/committee/talks/31talks/31CurcZmes.ppt">http://www.lnf.infn.it/committee/talks/31talks/31CurcZmes.ppt</a>)
- Synchrotron light source (http://www.lnf.infn.it/esperimenti/sr\_dafne\_light)



#### DANAE

(DAfne New – Adjustable Energy)
PHI-factory + Wide energy range
High luminosity at PHI energy





Danaë, the daughter of Acrisius, King of Argos, and of Eurydice, had been shut up by her father in a tower with bronze doors, as it had been prophesied that she would gave birth to a son who would be the cause of Acrisius' own death. But Zeus visited her in the form of a shower of gold falling from a cloud, and from their union Perseus was born

# DANAE Energy and Luminosity Range

| Energy @center of mass (GeV)                            | 1.02             | 2.4              |
|---------------------------------------------------------|------------------|------------------|
| Integrated Luminosity per year (ftbarn-1) >             | 10               | 1                |
| Total integrated luminosity >                           | 50               | 3                |
| Peak luminosity > (cm <sup>-2</sup> sec <sup>-1</sup> ) | 10 <sup>33</sup> | 10 <sup>32</sup> |

Use of DAΦNE buildings
Use of DAΦNE infrastructures
Use of DAΦNE injection system + upgrade of transfer lines
Use of large part of magnets, diagnostics

### New

- Dipoles
- Wigglers
- Rf system
- Vacuum chamber
- Interaction region

Application of new technologies
Use of all expertise and experience of DAΦNE
Use of DAΦNE runs for R&D while increasing L for next experiments

### From DAPNE to DANAE



(Simplified scheme)





# Higher luminosities



Increasing of cross section with current due

- Beam-beam
- Single beam effects(Single bunch effects + Total current effects)Stronger for lower energy

[cm-2 s-1] luminosity VS 2 1p [ci 1.6E+32-1.2E+32-1.0E+32-8.0E+31-6.0E+31-4.0E+31-0.0 5.0E+5 1.0E+6 1.5E+6 2.0E+6

 $N^+N^-$ 

Increasing the luminosity by:
Increasing the slope (smaller cross section)
Increasing the current
Fighting the blowup effects

### Higher energies



### Higher Magnetic fields

#### **EASIER**

Increasing the luminosity by:

Increasing the slope (smaller cross section)

Fighting the blowup effects

#### BUT

Power = Current x Energy loss

$$U_o \propto \left(I_{2dip}E^4, I_{2wig}E^2\right)$$

Limit in power = Limit in current



| DANAE<br>PARAMETERS  |                   |                                    | Ф             | N-N              |
|----------------------|-------------------|------------------------------------|---------------|------------------|
| Energy per beam      | Е                 | GeV                                | 0.51          | 1.2              |
| Circumference        | С                 | m                                  | 100           | 100              |
| Luminosity           | L                 | cm <sup>-2</sup> sec <sup>-1</sup> | 1033          | 10 <sup>32</sup> |
| Current per beam     |                   | Α                                  | 2.5           | 0.5              |
| N of bunches         | N <sub>b</sub>    |                                    | 150           | 30               |
| Particles per bunch  | N                 | 10 <sup>10</sup>                   | 3.1           | 3.4              |
| Emittance            | 3                 | mm mrad                            | 0.4           | 0.6              |
| Horizontal beta*     | $\beta_{x}$       | m                                  | 1             | 1                |
| Vertical beta*       | $\beta_{y}$       | cm                                 | 0.8           | 1.5              |
| Bunch length         | $\sigma_{L}$      | cm                                 | 1             | 1.5              |
| Coupling             | κ                 | %                                  | 0.5           | 1                |
| Energy lost per turn | U。                | (keV)                              | 25            | 189              |
| H damping time       | $\tau_{x}$        | (msec)                             | 13            | 5                |
| Beam Power           | $P_{w}$           | (kW)                               | 62 (55w + 7d) | 94.6 (42w + 53d) |
| Power per meter      | P <sub>w</sub> /m | (kW/m)                             | 8.6w + 0.5d   | 8.4w + 3.8d      |

### DANAE lattice and dynamic aperture



# 

# **DIPOLES**

normal conducting dipoles Maximum field:

1.72 T @1.2 GeV

$$I_2 = 2.7 \text{ m}^{-1}$$

| Dipoles per ring | 12          |
|------------------|-------------|
| B (T)            | 0.73 - 1.72 |
| ρ (m)            | 2.33        |
| Gap (cm)         | 4.3         |
| Current (A)      | 198 / 517   |

### SC Wigglers to further increase radiation

$$L_{\rm w}$$
 = 6 m @ B = 4 T  
 $\tau_{\rm x}$  (@510 MeV) = 13 msec  $I_{\rm 2}$  = 22 m<sup>-1</sup>  
 $\tau_{\rm x}$  (@1.2 GeV) = 5 msec  $I_{\rm 2}$  = 6 m<sup>-1</sup>

$$i_2 = \frac{1}{2} \left( \frac{B}{B\rho} \right)^2 L_w$$

### DANAE wiggler parameters



| Energy                                                      |  | 0.51 | 1.2  |
|-------------------------------------------------------------|--|------|------|
| Maximum magnetic field B <sub>max</sub>                     |  | 4    | 4    |
| Total number of poles                                       |  | 19   | 19   |
| Total length                                                |  | 2.96 | 2.96 |
| Central pole length                                         |  | 16   | 16   |
| End poles length                                            |  | 8    | 8    |
| 2 <sup>nd</sup> and penultimate poles length                |  | 12   | 12   |
| End poles field ratio with B <sub>max</sub>                 |  | 0.5  | 0.5  |
| $2^{\rm nd}$ and penultimate field ratio with $B_{\rm max}$ |  | 1    | 1    |
| Max trajectory oscillation                                  |  | 6    | 2.5  |
| Path – wiggler length difference                            |  | 11.8 | 2.1  |
| Total vertical beam stay clear                              |  | 2    | 2    |
| Total horizontal beam stay clear                            |  | 8.5  | 8.5  |

Collaboration with BINP group:

SC Wiggler built at BINP  $B_{max} = 7 T$ for SIBERIAII







медный лайнер

# RF system @ 500 MHz

Harmonic number: 160
Maximum # bunches: 150

# Our candidate cavity is the SC cavity operating at KEKB



Figure 2: A picture of four SCC modules in Nikko-D11 tunnel



# IR Tunable design

Based on SC technology (Lately developed

for colliders like HERA, BEPC and ILC)



QD + sol + skew + skew

Antisolenoids and skews compensate coupling in the whole range of energies and B<sub>det</sub>



Double steering to adjust crossing angle

# BROOKHAVEN Take advantage of BNL experience making Superconducting Magnet Division Superconducting magnets for HERA-II.

# ...BNL Direct Wind Superconducting Magnets



Production of IR magnets for the HERA-II luminosity upgrade using a computer controlled winding machine.



Ultrasonic heating bonds epoxy coated conductor to substrate on a support tube (tack in place).

# Energy spread – bunch length – rf system

Natural bunch length and energy spread at low current are defined by the magnetic lattice, the momentum compaction and the rf system

$$\left(\frac{\sigma_E}{E}\right)^2 = C_q \gamma^2 \frac{I_3}{2I_2 + I_4} \approx \frac{C_q \gamma^2}{\rho}$$

More radiation – larger energy spread – longer bunch

$$\sigma_{L} = \frac{c \left| \alpha_{c} \right|}{\omega_{s}} \frac{\sigma_{E}}{E} = \frac{\sqrt{2\pi}c}{\omega_{o}} \sqrt{\frac{\alpha_{c}E}{heV}} \frac{\sigma_{E}}{E}$$

Bunch length can be shortened by increasing h, V

### Short bunch length at high current:

- Low impedance
- High voltage

Above the microwave instability current threshold  $\sigma_L$  increases with the current, not depending on  $\alpha_c$ 

#### SIMULATIONS for DANAE



$$I_{th} = \sqrt{2\pi} \frac{\alpha_c E / e \left(\sigma_E / E\right)^2 \sigma_l}{\left|Z_{\Box} / n\right| R}$$

# SIMULATIONS and MEASUREMENTS ON DATANE



### VACUUM CHAMBERS

Keep more regular vacuum chamber shape (experience from DAΦNE and CTF3)

Use of small ICE wih negligible impedance Ti coating for e+ surfaces Optimisation of slots and bellows for 1 cm bunch lengths





CTF3 vacuum chambers

### Longitudinal Feedback kicker

Parameters of PEPII kicker, designed by LNF, almost equal to DANAE ones.







# Injection system

- Linac + Accumulatore OK
- Doubling transfer lines for optimizing <L>
- Ramping for high energy option

The High Luminosity option needs continuous injection

### Tentative schedule

To — CDR and Project approval (2006)

To + 1 year 
 — call for tender

To + 2 years — construction and delivery

To + 3 years → DAΦNE decommissioning and DANAE installation

# Many HE labs are questioning their future Programs are defined for the next few years

### Frascati history:

ADA 1960 - 1962

ADONE 1969 - 1993

DAΦNE 1998 - 2009

# with DANAE

based on DAΦNE,

and amplifying its goals in terms of energy and luminosity we are proposing to the international community to gather around the project.

LNF can be the HE physics lab in Europe where to continue the lepton physics at low energy in LHC era and before ILC comes to reality