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Accurate, multi-purpose, real-time ROI and size measurement for

e-beam diagnostic at SPARC experiment.

M. Quattromini and V. Surrenti†

C.R.E. ENEA-Frascati, Via E. Fermi 45, 00044 Frascati (Rome) Italy∗

In this note the problem of fast and accurate measurement of electron beam size for diagnostic
purposes is addressed, with focus to emittance measurement via quadrupole scans and beam match-
ing. An algorithm is devised that rapidly determines a region of interest where most of the signal
is concentrated, not requiring acquisition and subtraction of background. The performances of the
method are discussed in a variety of contexts relevant to a set of measures routinely performed
during runs at SPARC[1] experiment. Although the algorithms are remarkably fast, little or no em-
phasis is devoted in this note to time performances, postoponing to a forthcoming note a thorough
analysis of execution speed and a prospective real time implementation.

∗Dedicated to the lovely memory of our mothers Fedora and Maria, who were happily among us when this work
was commenced, and now are not anymore.



2

I. INTRODUCTION

In this note the problem of fast, accurate identification of the Region Of Interest (“ROI”, here-
after) in the picture of the transverse configuration space of an electron beam impinging onto
an imaging device is addressed. Many factors contribute to render the automation of such a
task cumbersome, first of all the incumbence of a wide, spiky noise dotting the image, as is
clearly visible, for example, in fig. (1). The presence of noise thwarts the accurate evaluation of
statistical properties as centroid’s average position and size, which are crucial for measurements
of e.g. transverse emittance in quadrupole scans, energy or beam longitudinal tomography. Fast
completion of the task is not as much a requirement unless short term stability is a concern, but
remains nevertheless a desirable feature, not to mention the absence of bias inherent to auto-
mated execution with respect to procedures involving at any stage direct inspection by human
operators. Moreover, even though the technique described here benefits from acquisition and
subtraction of background - especially when a substantial dark current is present contributing a
charge comparable to that of accelerated bunch - this is not strictly necessary, which may consid-
erably improve time performances. The document layout is the following: in the next section the
algorithm devoted to fast ROI identification is described. In the third section the effects of noise
on spot’s centroid and size assessment are investigated along with various approaches aiming at
improving accuracy. Results against synthetic images are checked in the fourth section. Fifth
section briefly examplifies the functioning of the algorithm for images acquired in other cases
from the primary context of electron beams. Sixth and last section is devoted to final remarks
and conclusions.

II. AUTOMATED ROI IDENTIFICATION PROCEDURE.

The algorithm adopted to identify the ROI is divided in two parts. The first is essentially a
process of erosion, summarized by the pseudo-code snippet in Algorithm (1).

Figure 1: A typical e-beam spot acquired for q-scan emittance measurement. The image has
been normalized and negated for clarity. The arc-like pattern on the left-bottom cor-
ner is an artifact of the target plate used for e-beam imaging.
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Algorithm 1 FIRE (Fast Image ROI Extraction) 1st part (→image erosion).

1: procedure Erosion(image)
2: Smooth(image,r) ⊲ Reduce “salt-pepper” noise by replacing each pixel with the

median value in a pixel window of radius r.
Optional. Strongly reccomended.

3: SetMinGrayLevel(image,0) ⊲ Offset subtraction: lmin ← 0, see below.
Optional for ROI tagging. Critical to improve

accuracy on rms estimation (Algorithm (2).
4: nt ←Thresholding coarseness. ⊲ Set the maximum number of steps taken

to span the intensity range of the image.
Not critical, nt & 10− 20.

5: i← 1 ⊲ Starting value.
6: repeat

7: t← lmin + i×
lmax − lmin

nt
⊲ Sets the threshold level.

8: BlackThreshold(image,t) ⊲ Set to zero all pixels with signal < t.

9: A(i) ←CountSurvivors(image) ⊲ Count pixels with signal > 0.

10: I(i) ←ComputeIntegral(image) ⊲ Sum signal from survivors.
11: if i > 1 then

12: r
(i)
A
←
A(i−1) − A(i)

A(i−1)
⊲ Compute (relative) removed area.

13: r
(i)
I
←
I(i−1) − I(i)

I(i−1)
⊲ Compute (relative) removed signal.

14: if r
(i)
I

> 0 then

15: R(i) ←
r
(i)
A

r
(i)
I

⊲ Compute trade-off ratio.

between rejected area/signal

16: if R(i) > R(i−1) then ⊲ If R(i) didn’t peak yet...
17: i← i+ 1 ⊲ ...Go for another iteration
18: else ⊲ ... Else ...
19: lasti ← i− 1 ⊲ Take a step back ...
20: exitcondition← True ⊲ ... Signal exit condition and ...
21: break ⊲ ... Exit loop
22: end if

23: end if

24: end if

25: until i < nt ∨ exitcondition 6=True

26: end procedure

Some comments are in order to elucidate how the procedure works:

• The smoothing procedure mentioned at step (2) replaces each pixel with its neighbor closest
in value. A neighbor is a structuring element defined by a radius, for example a square
(2r + 1) × (2r + 1) pixels wide. A value of zero plays of course no effect. In the current
analysis has been used a value r = 2. Note that the main effect of this operation is
suppression of defective, isolated pixels on the camera’s imaging device, (i.e. “dead” pixels
always on or off).

• The main iteration (steps 6-25) consists of a progressive black-thresholding, that con-

tinues until the ratio R(i) (step 15) between the relative removed area r
(i)
A (step 12) and the

relative removed signal r
(i)
I (step 13) first peaks. R(i) exhibits indeed a very clear maximum

(see fig. 2). The idea behind this is that most of the signal is localized in a narrow region
surrounded by a very wide though shallow background, dotted of spiky, isolated peaks,
contributing altogether an overwhelming fraction of the total integral. A wide background,
moreover, seriously affects the accurate reconstruction of signal’ distribution first momenta
(essentialy average position and r.m.s.) needed in a variety of cases, e.g. during emittance
quadrupole scans.
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Figure 2: R =
rA
rI

vs threshold (step 15 in Algorithm 1) for the image in fig (1).

• Progressive black-thresholding image is expected to erode initially more area - that is,
pixels hosting mainly background - than signal - to be understood here as the bona fide

superposition of real signal and noise. This is the case indeed clearly visible in figure (3),
where the surviving total area tA and the total integral tI (as fractions of the entire image
quantities) are plotted vs the threshold level. It is worth remarking that although the very
first step is usually the most effective at removing a large fraction of background pixels, it
is by no means the best compromise between noise rejection and loss of signal. This is best

substantiated in fig. (4), where is clear that maxima of both r
(i)
A and r

(i)
I occur at a lower

threshold than the value that maximizes the ratio between them (the dashed vertical line).
Usually one or more steps are required to achieve R’s maximum, signalling a condition
whereupon further thresholding implies a negative trend in relative signal-to-noise erosion.
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Figure 3: Relative total area (tA) and integral (tI) surviving a given black-threshold level for
e-beam image in fig. (1). Total area decreases much faster than signal with increas-
ing threshold levels. The vertical dashed line signals the position of maximum in fig.
(2).

The effect of image erosion through progressive black-thresholding is illustrated in fig. (5). It is
worth remarking that erosion (as of pseudo-code in Algorithm 1) does not really define any ROI.
It may strongly restricts the image support - the set of pixels where the distribution is strictly
positive - which by no means is warranted to form a connected domain embodying the signal.
In order to introduce a rigorous, quantitative definition of ROI let

µ ≡ I(1)

I(0)
≡ w

σ̂ ≡ I(2)

I(0)
− µ · µT

(1)
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Figure 4: Relative removed total area (rA) and integral (rI) vs black-threshold level for e-
beam image in fig. (1). Maxima occur at thresholds lower than level at which rA/rI
first peaks (dashed vertical line).

be the centroid’s average position and covariance (that is r.m.s.) matrix at a given level in the
thresholding process and

I(0) ≡
∑

x,y

I (w)

I(1) ≡
∑

x,y

I (w) · w

I(2) ≡
∑

x,y

I (w) ·
[
w · wT

]

with w ≡
(

x
y

)
(2)

the 0th, 1st and 2nd order distribution’s momenta of the intensity I (w) at pixel of coordinates
w ≡ (x, y). In terms of (2), a region of interest can be defined as the domain:

Dn ≡
{
w � (w − w)

T · σ̂−1 · (w − w) ≤ n2
}

(3)

where

σ̂ ≡ I(2)

I(0)
− I(1) · I(1)T

(
I(0)

)2 (4)

is the r.m.s. matrix and n2 is a (positive) quantity. The equation (3) defines the interior of
a family of ellipses, like those drawn over frames in fig. (5), corresponding to n = 3. The
crossing lines reflect centroid’s average position and orientation ot the ellipse itself. Note that
the ellipse in the second frame is not missing, it is merely so large to include the whole image,
while that in the last frame (the final step in thresholding procedure) defines a safeguard region
completely embodying the seeked signal, almost unbiased by the long-range, snow-like noise

Figure 5: Effects of image erosion. The leftmost frame in the sequence is the same 8−bit im-
age as in fig. (1), while the following snapshots corresponds to the same image after
progressive black-thresholding with levels equal to l = 2, 3, 4, 5. Thresholding was
preceded by the preliminary noise reduction described in algorithm (1), step (2). Im-
ages have been normalized for clarity. Maximum level in the original was l = 56.
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affecting the original, yet still plagued by the arc-like artifacts mentioned above. Clearly some
further refinement is in order to pinpoint a recipe entailing a sound estimation of distribution’
r.m.s. size. A working, euristic prescription is sketched in the pseudocode below:

Algorithm 2 FIRE (Fast Image ROI Extraction) 2nd part (→ROI definition, masking).

1: procedure Masking(I) ⊲ I is the image resulting from thresholding
procedure described in the 1

st part.

2: {I0, I1, I2} ←ComputeMomenta(I) ⊲ Compute 0
th, 1st and 2

nd order
image momenta (eqs.(1,2)).

3: {µ, σ̂} ←ComputeStat(I0, I1, I2) ⊲ Compute distribution’s
centroid and r.m.s. size.

4: M←DefineROI(µ, σ̂, n) ⊲ Define a mask, i.e. an image which is 1
inside the ellipse in eq. (3), 0 elsewhere.

This is the ROI.

5: Ĩ ←ApplyROIMask(I,M) ⊲ Apply mask M to I.

6:
{
Ĩ0, Ĩ1, Ĩ2

}
←ComputeMomenta(Ĩ) ⊲ Compute 0

th, 1st and 2
nd order

masked image momenta (eqs.(1,2)).

7:
{
µ̃, ˜̂σ

}
←ComputeStat(Ĩ0, Ĩ1, Ĩ2) ⊲ Compute masked distribution’s

centroid and r.m.s. size.
8: end procedure

In a nutshell, the 2nd part of the algorithm can be summarized as follows:

• Define the ROI as the ellipse in last frame of fig. (5), corresponding to the final step in
thresholding procedure described in the 1st part, through eq. (3) for a suitable value of n
(n & 3 is a safe choice);

• define a mask, that is a stencil image with pixel content equal to 1 on the ROI, 0 elsewhere;
apply the mask, that is multiply pixel-by-pixel the mask by the thresholded image emerging
from erosion part of the algorithm; compute centroid’s position and r.m.s. beam size from
eqs. (1);

• define the core signal as the fraction of the image falling inside an embodying ellipse
computed for a suitable value n (e.g. the same value used for the ROI).

(a) (b)

Figure 6: Left (a): the result of procedure described in Algorithm (2). Right (b): The final
ellipse drawn over the original, noisy image.

The result of such a procedure are illustrated in fig. (6a) for the same sequence as in fig. (5).
In the left frame the family of ellipses defining the ROI at progressive black-thresholding levels
are superimposed along with the (innermost) one embodying the core; in fig. (6b) this very last
ellipse is drawn alone on the original, noisy snapshot. Another glimpse of the algorithm working
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Figure 7: Result of ROI tagging for a sequence of ten images acquired during a 4-pole scan.
Top-left frame corresponds to image in fig. (1). The drawn ellipses corresponds to a
value n = 3 in (3) at different stages during algorithm’s iterations.

can be seen in fig. (7), where the frames in the sequence corresponds to snapshots acquired
during a quadrupole scan, the left-top frame being the same as fig. (6a). Visual inspection of the
sequences of shrinking ellipses in each snapshot clearly suggests that ROIs at pristine stages of
the procedure are largely determined by the background, including the arc-like artifacts visible in
left-bottom corner (which outline the boundaries of the plate the electron beam impinges upon).
In fact, outermost ellipses look much the same in the ten frames, differentiating one from the
other at final steps only, where ROIs look finally as a sound guesses of the signal position, size
and orientation.

Note that for a 2D gaussian profile (like that described by eq. (26) below), which is usu-
ally a reasonable assumption, it can be easily proven that the domain (3) includes a fraction[
1− exp

(
−n2

2

)]
of the total signal.

In the following section the estimation accuracy of statistical properties of signal inside ROI
will be discussed, with much emphasis devoted to the problem of residual noise surviving the
cut, treatment of various diseases arising e.g. from digital quantization, and a few idiosyncrasies
related to specific image formats.

III. EFFECTS OF NOISE ON R.M.S. VALUES. RMS MATRIX CORRECTION.

Consider the ellipse in fig. 8, delimiting the ROI derived in the previous section, which for sake
of simplicity has been assumed to be centrated at origin. Assuming that the signal is entirely
localized in this region, one can safely discard any information falling outside, greatly reducing
the effect of noise compromising the accuracy of r.m.s. size’s measurement. In this section an
analytical procedure is devised to assess the noise level and derive a formula to compensate its
effect on spot size. In Appendices A and B can be found some customary algebra exploiting the
transformation properties of fundamental objects (vectors, tensors) in the 2D-plane, which turns
handy in order to reduce the amount of calculations in the following analysis. Let F (x, y) be
the scalar function associated to the signal over the ROI. Accordingy with (2), the 0th, 1st and
2nd momenta associated can be written in compact form as

I(0)D (F) ≡
∫

D

d2w F (w)

I(1)D (F) ≡
∫

D

d2w F (w)w

I(2)D (F) ≡
∫

D

d2w F (w)
[
w · wT

]

(5)

where

w ≡




x

y


 d2w ≡ dx · dy
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Finally, let D is the domain associated to the ROI:

D ≡
{
w �

[
(w − d)

T · Ŝ−1 · (w − d)
]
≤ n2

}
(6)

where

d ≡




dx

dy


 (7)

(see fig. (8)) and S is the matrix associated to the ROI (that is the r.m.s. matrix of the original
image optimally black-thresholded). Let ω denote the generic vector in the frame (ξ, η):

ω ≡




ξ

η


 (8)

Although an accurate disentanglement of the signal is an awkward task, especially on spot’s
boundaries where it is inherently impossible to distinguish from noise, as long as the emphasis is
on statistical properties, one can always assume that the observed spot is described by a function
F resulting from the superposition of a genuine signal - which will be denoted by f (w) - and a
noise N (w) spread all over the image:

F (w) = f (w) +N (w) (9)

Consistently with definitions (2,5) and (9) it follows then

I(0)
D [F ] = I(0)

D [f ] + I(0)
D [N ]

I(1)
D [F ] = I(1)

D [f ] + I(1)
D [N ]

I(2)
D [F ] = I(2)

D [f ] + I(2)
D [N ]

(10)

Ξ

Η

Φ

n× SΞΞ

n× SΗΗ

D

d

dx

dx

x

y

Figure 8
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Formulæ (10) come handy whenever background images are available for which one can bona

fide assume the content to be the same as the noise N (w) of the images to be analyzed. This
is the case, for example, of dark current in electron beams and is to be understood - of course
- only in a statistical sense for one aims only at an independent evaluation of noise momenta

I(k)
D [N ]. Alternatively, the further assumption (whenever plausible) that the function N (w) be

homogeneous :

N (w) = κ =⇒ F (w) = f (w) + κ (11)

allows the derivation of an analytical correction factor relatively immune from artifacts due e.g.
to limited bitdepth in ADC conversion at DAQ stage, or the format utilized for image storage.
The two cases will be now treated separately, with some emphasis devoted to error assessment.

A. Homogeneous noise.

Whenever (11) applies, formulæ (10) read

I(0)
D [F ] = I(0)

D [f ] + κJ (0)
D

I(1)
D [F ] = I(1)

D [f ] + κJ (1)
D

I(2)
D [F ] = I(2)

D [f ] + κJ (2)
D

(12)

where

J (0)
D =

∫

D

d2w

is nothing but the area AD of domain D (that is J (0)
D = AD) while

J (1)
D ≡

∫

D

d2w w

J (2)
D ≡

∫
D d2w

(
w · wT

)

are the 1st and 2nd momenta of the constant function f (w) = 1. Since D is the ellipse defined
by any of eqs. (6), (B5) and (B6), it is easily proven that (see (B7))

J (0)
D ≡ AD = πn2

√
det Ŝ (13)

while J (1)
D is obviously AD times the center of the ROI µD ≡ d:

J (1)
D = ADd (14)

The calculation of J (2)
D is worked out in Appendix B (eqs. (B13-B15)) and turns to be

J (2)
D = AD

[
n2

4
Ŝ + d · dT

]
(15)

It is worth noting, en passant, that for f = 0, formulæ(1),(15) yield

σ̂D (F = κ) ≡ I(2)
D [F ]

I(0)
D [F ]

− I(1)
D [F ] · I(1)T

D [F ]
(
I(0)
D [F ]

)2 =
J (2)
D

J (0)
D

− J (1)
D · J (1)T

D(
J (0)
D

)2 =
n2

4
Ŝ

which generalize, the well known result that for an uniform distribution over a circle of radius ρ
the components of the r.m.s. matrix are given by σxx = σyy = ρ2/4.
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The corrected r.m.s. tensor σ̂D (f) can be cast in terms of the rough estimate σ̂D (F ) with
some manipulations (cfr (1)):

σ̂D (f ) ≡ I(2)
D [f ]

I(0)
D [f ]

− µD [f ] · µD [f ]
T

µD [f ] ≡ I(1)
D [f ]

I(0)
D [f ]

where

µD [f ] =
I(1)
D [F ]− κJ (1)

D

I(0)
D [F ]

I(0)
D [F ]

I(0)
D [F ]− κAD

=

[
µD [F ]− κ

AD

I(0)
D [F ]

d

] [
1

1− κAD/I(0)
D [F ]

]

Denoting by

〈F〉D ≡ I(0)
D [F ]

AD

the average of F over the domain D, it follows

µD [f ] =
〈F〉D

〈F〉D − κ

[
µD [F ]− κd

〈F〉D

]

(note that〈F〉D − κ = 〈f 〉D). By following the same approach it is possible to derive a similar
formula for the corrected covariance matrix:

σ̂D [f ] =
I(0)
D [F ]

I(0)
D [F ]− κAD

I(2)
D [F ]− κJ (2)

D

I(0)
D [F ]

− µD [f ] · µD [f ]
T

=
〈F〉D

〈F〉D − κ

[
σ̂D [F ] + µD [F ] · µT

D [F ]− κ

〈F 〉D

(
n2

4
Ŝ + d · dT

)

− 〈F〉D
〈F〉D − κ

(
µD [F ]− κd

〈F〉D

)
·
(
µD [F ]− κd

〈F〉D

)T
]

=
〈F〉D

〈F〉D − κ

[
σ̂D [F ]− κ

〈F〉D − κ

(
µD [F ] · µT

D [F ] + d · dT
)
− κn2

4 〈F〉D
Ŝ

+
κ

〈F〉D − κ

(
d · µT

D [F ] + µD [F ] · dT
)]

=
〈F〉D

〈F〉D − κ

{
σ̂D [F ]− κ

[
(d− µD [F ]) · (d− µD [F ])

T

〈F〉D − κ
− n2Ŝ

4 〈F〉D

]}

(16)

Note that derivation of eq. (16) is strictly functional only to error assessment analyzed below.
From a progammer’s point of view, it is much simpler use of eqs. (10) or - in the case that (11)
applies - eqs. (12) In eqs. (16),(20) the only unknown parameter is κ, the average noise level
underneath the signal. Assuming (see fig. (9)) that the signal is confined completelly inside the

ROI (the domain D ≡ D
(
Ŝ, n2

)
defined by eqs. (6) or (B4) as a combination of a r.m.s. matrix

Ŝ and a positive number n2, see formula (3)), a possible strategy is to define κ as the image

average level in the area enclosed between the ROI and the boundary of a domain D
(
Ŝ, N2

)

defined by eq. (3) with a slightly larger value of positive parameter N2 > n2:

κ ≈
I(0)

D(Ŝ,N2)
[F ]− I(0)

D(Ŝ,n2)
[F ]

AD(Ŝ,N2) −AD(Ŝ,n2)
=

1

π
√

det Ŝ

I(0)

D(Ŝ,N2)
[F ]− I(0)

D(Ŝ,n2)
[F ]

N2 − n2
(17)
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Formula (17) can be recast in the more suggestive fashion:

κ ≈ 1

π
√
det Ŝ

∂I(0)
D(Ŝ,ν) [F ]

∂ν

∣∣∣∣∣∣
ν=n2

(18)

implying that

I(0)

D(Ŝ,N2)
[F ] ≈ I(0)

D(Ŝ,n2)
[F ] + κπ

√
det Ŝ

(
N2 − n2

)
(19)

Formula (19) express nothing but the obvious fact that as soon n2 is large enough for ROI to
include the whole signal and noise is homogeneous outside, 1st momentum grows linearly with
the area of the ellipse

(
∝ N2

)
. Such an expected behaviour provides a tool to fit values of κ,

I(0)

D(Ŝ,n2)
and (optionally) n.

Observe now that

µD [F ] ≈ d =⇒ σ̂D [f ] ≈ 〈F〉D
〈F〉D − κ

σ̂D [F ]− κ

〈F〉D − κ

n2

4
Ŝ (20)

which can be cast in the equivalent form

σ̂D [F ] =
〈F〉D − κ

〈F〉D
σ̂D [f ] +

κ

〈F〉D
n2

4
Ŝ (21)

expressing the obvious result that if the barycentre (µD [F ]) of F does not differ substantially
from the center (d) of the ROI, then σ̂D [F ] can be expressed as the mean of the r.m.s. matrix

of the signal σ̂D [f ] and the r.m.s. matrix of the noise n2

4 Ŝ, weighted by the respective average
values over D. Formula (21) turns to be useful for a sound estimation of the error on σ̂D [f ] as a
function of the other quantities involved. To this purpose, assuming for a moment the effects of
signal quantization to be negligible with respect to statistical error on κ , estimated on the finite

sample of pixels falling in between D
(
Ŝ, n2

)
and D

(
Ŝ, N2

)
, i.e. that in eq. (21) only σ̂D [f ]

and κ are affected by uncertainties, it follows by differentiation that

0 ≈ 1

〈F〉D

{[
σ̂D [f ] +

κ

〈F〉D
n2

4
Ŝ
]
δκ− κ · δσ̂D [f ]

}

that is

δσ̂D [f ] ≈
(
σ̂D [f ] + κ

n2

4 〈F〉D
Ŝ
)

δκ

κ
(22)

Figure 9
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Formula (22) can be exploited to derive an expression of the relative error on σ̂D [f ] (note in fact
that σ̂D [f ] is a matrix and the concept definition needs some care):

δσ̂D [f ]

σ̂D [f ]
≡ σ̂−1

D [f ] · δσ̂D [f ] ≈
[
1 + n2κ

4

σ̂−1
D [f ] · Ŝ
〈F〉D

]
δκ

κ
(23)

showing that - roughly speaking - error propagation from κ to σ̂D [f ] is dominated by large values
of n. Note also that factor κ/ 〈F〉D although upper bounded to 1, gets more unfavourable for
large n.

B. Inhomogeneous noise.

Let us devise now an analytical expression for the r.m.s. matrix in the case of an inhomogeneous
noise. According to (1) and (12) corrected r.m.s. matrix σ̂D (f ) reads

σ̂D (f ) ≡ ID(2) (F)− ID(2) (N )

ID(0) (F)− ID(0) (N )
−

[
ID(1) (F)− ID(1) (N )

]
·
[
ID(1) (F)− ID(1) (N )

]T

[
ID(0) (F)− ID(0) (N )

]2

Let us cast now I(0)
D (N ) as follows

I(0)
D (N ) =

I(0)
D (N )

AD

AD

I(0)
D (F)

I(0)
D (F) =

〈N〉D
〈F〉D

I(0)
D (F)

and assume that

µD [N ] ≈ µD [F ] ⇐⇒ I(1)
D (N )

I(0)
D (N )

≈ I(1)
D (F)

I(0)
D (F)

⇓

ID(1) (N ) ≈ I(0)
D (N )

I(0)
D (F)

I(1)
D (F) =

〈N〉D
〈F〉D

I(1)
D (F)

Thus

σ̂D (f ) ≈
(
1− 〈N〉D

〈F〉D

)−1 I(2)
D (F)− I(2)

D (N )

I(0)
D (F)

− I(1)
D (F) · I(1)T

D (F)
[
I(0)
D (F)

]2

=

(
1− 〈N〉D

〈F〉D

)−1



I(2)
D (F)− I(2)

D (N )

I(0)
D (F)

−
(
1− 〈N〉D

〈F〉D

) I(1)
D (F) · I(1)T

D (F)
[
I(0)
D (F)

]2




=

(
1− 〈N〉D

〈F〉D

)−1





σ̂D(F)︷ ︸︸ ︷

I(2)
D (F)

I(0)
D (F)

− I(1)
D (F) · I(1)T

D (F)
[
I(0)
D (F)

]2


− I(2)

D (N )

I(0)
D (F)

+
〈N〉D
〈F〉D

I(1)
D (F) · I(1)T

D (F)
[
I(0)
D (F)

]2





=

(
1− 〈N〉D

〈F〉D

)−1




σ̂D (F)−



I(2)
D (N )

I(0)
D (F)

− 〈N〉D
〈F〉D

I(1)
D (F) · I(1)T

D (F)
[
I(0)
D (F)

]2








(24)
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Let us cast now I(2) (N ) in the following form

I(2)
D (N ) =

〈N〉D
〈F〉D

I(2)
D (F) +

(
1− 〈N〉D

〈F〉D

)
I(0)
D (F) Λ(2)

where Λ(2) is a 2nd rank tensor (i.e. a matrix). Substitution in (25) yields

σ̂D (f ) = σ̂D (F)− Λ(2) (25)

where

Λ(2) =
〈F〉D

〈F〉D − 〈N〉D

I(2)
D (N )− 〈N〉

D

〈F〉
D

I(2)
D (F)

I(0)
D (F)

=
1

〈F〉D − 〈N〉D
〈F〉D I(2)

D (N )− 〈N〉D I(2)
D (F)

I(0)
D (F)

IV. ACCURACY.

In this section the accuracy achievable by the algorithms described above will be assessed
by applying the procedures to synthetic images for the two cases of homogeneous (IVA) and
inhomogeneous (IVB) noise. All synthetic images were produced with Mathematica[2] and
processed with a tool developped in C language exploiting the freely available image processing
library GraphicsMagick[3].

A. Homogeneous noise.

In order to assess the accuracy of the procedure, several hundreds synthetic images have been
created by adding a signal to an image with a known noise content. The intensity distribution
(extracted from a typical background image) is plotted in fig. (10a) and was used to generate
8 and 12 bit (see fig. (10b)) synthetic images free from artifacts. Composite assembly in fig.
(11) contains the thumbnails relative to a sequence of images obtained from (26) for σxx =
100, 200, . . . , 800 and N = 0.1 (10% of full scale value). Both the ellipses drawn around the
signal spot tag the ROIs obtained through the algorithm (1), the smaller being the result of
applying the (optional) noise reduction procedure (line 2).

S = N · exp
[
−1

2
(w − w0)

T · Σ̂−1 · (w − w0)
T

]
(26)

where

w0 =

(
250
350

)
Σ =


 σxx

σxx

3σxx

3

σxx

2


 (27)

Composite assembly in fig. (11) contains the thumbnails relative to a sequence of images obtained
from (26) for σxx = 100, 200, . . . , 900 and N = 0.1 (10% of full scale value). Both the ellipses
drawn around the signal spot tag the ROIs obtained through the algorithm (1), the smaller being
the result of applying the (optional) noise reduction procedure (line 2).
In fig. (12) the reconstructed σxx for a gaussian signal as described by eq. (26,27) is plotted vs
the value of n used to define the ROI (domain D in formula (16)).Two remarks are in order at
this point:

i) a higher graylevel depth do not provide substantially more accurate results;

ii) accuracy on components of σ are instead strongly correlated to a correct assessment of the
noise level (variable κ in formula (11)), as is shown in figs. (13a) and (13b) where relative
error on κ is plotted along with relative error on σxx. Note also that for too small values
of n the reconstructed values suffer a strong bias from the tails of the signal still present
in the corona of the ROI used to measure κ.
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8 bit

0.00 0.01 0.02 0.03 0.04
{H norm L
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0.30

P H { L

(a) (b)

Figure 10: (a) Typical intensity distribution extracted from a synthetic background images; ℓ
is the normalized intensity (i.e. ℓ = 0, 1 corresponds to full black/white);
(b) the 12-bit image generated according to distribution in (10a). The image has
been normalized and negated to improve clarity.

Figure 11: Syntethic gaussian signals added to background image in fig. (10b). Matrix Σ as-
pect ratio is as specified in eq. (27) with σxx = 100, 200, . . . , 800 (left to right, top
to bottom) and N =0.1. The red/blue ellipses tag the n = 6 ROIs for 8 and 12 bit
images, respectively. An unusually high value has been chosen for n only to make
the two cases more easily discernible.

The ellipses surrounding the signal in the thumbnails in fig. (14) identify the n = 4 contours
associated to ROI’s and reconstructed σ̂’s for a gaussian signal of aspect ratio as specified in
eq. (27) and σxx = 900. The Signal(peak)-to-Noise(average) ratio is (from left to right, top to
bottom) S/N = {1.36, 2.72, 5.43, 10.9, 21.7, 43.5, 87.0}. The red/blue ellipses identify the n = 4
contours for ROI’s and reconstructed σ̂, respectively. Note that ROI’s tagging works even in
the more unfavourable case where noise level - although lower on average - can be higher than
signal because of fluctuations. In fig (15) is plotted the behaviour of relative error on σxx vs
Signal(peak)-to-Noise(average) ratio for the case described in fig. (14) and σxx = 300. Consider,
to this purpose, the x and y projections of the synthetic image in the top-left corner of fig. (14)

B. Inhomogeneous noise.

In all the cases that (11) cannot be applied, the more general approach based on eqs. (10) must
be followed. Although - as before - one is not interested in the detailed topological properties

of the noise, nevertheless its structure affects momenta I(k)
D [n]. The only reasonable procedure,

therefore, seems that of directly extracting those quantities from the the area corresponding to
the same ROI in background images and exploiting linearity (that is, eqs. (10)). In order to
assess the performances of this approach, a large number of 16−bit synthetic images has been
created aiming at mimicking the conditions met during real experiments. The image format
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Noise Reduct ion = on
Σxx = 600 depth = 8 bit
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(a)

Noise Reduct ion = on
Σxx = 700 depth = 12 bit

3.0 3.5 4.0 4.5 5.0 5.5 6.0 n0
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800

Σxx

(b)

Figure 12: Reconstructed σxx vs n for a gaussian signal as described by eqs. (26) and (27) for 8
(a) and 12 (b) bit images. Black, dashed lines are the exact value used to generate
the synthetic images.

Noise Reduct ion = on

Σxx = 600 depth = 8 bit
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-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

5 � DΚ � Κ ,
DΣxx �Σxx

(a)

Noise Reduct ion = on

Σxx = 600 depth = 12 bit
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5 � DΚ � Κ ,
DΣxx �Σxx

(b)

Figure 13: Relative error on κ (solid, blue) and σxx (dashed, green) for σxx = 700. Note: ∆κ/κ
has been multiplied by 5 to clarify the strong correlation with ∆σxx/σxx.

Figure 14: Syntethic images obtained by adding to background image in fig. (10b) a gaussian
signals with fixed aspect ratio and size. The red/blue ellipses identify the n = 4
contours for ROI’s and reconstructed σ̂, respectively.
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Figure 15: Relative error σxx vs Signal(peak)-to-Noise(average) ratio for σxx = 300 (solid,
blue) and σxx = 900 (dashed, green). The accuracy is fairly good also for the more
unfavourable cases.

reflect the operation conditions of SPARC experiment as of fall 2010, namely 16−bit with 12−bit
quantization, and where built superimposing

• an impulsive (a.k.a. “salt-and-pepper” or “shot”) noise, with only two possible outcomes,
2nbit − 1 (nbit = 12) and 0, with probability µSN;

• a poissonian noise with normalized average µPN;

• a gaussian signal and background

FX (w) = AX exp

[
−1

2
(w − wX )

T · Σ−1
X

· (w − wX )

]
X = S,B (28)

of center and r.m.s. matrix

wS =




200

350


 ΣS =




12 · 102 8 · 102

8 · 102 24 · 102


 (29)

and

wB =




300

250


 ΣB =




24 · 104 −8 · 104

−8 · 104 12 · 104


 (30)

respectively. For the background the amplitude has been kept fixed to AB = 0.01. For the
signal the values AS = 0.02, 0.04, 0.08 have been considered. Since the signal is normalized
to NX = 2πAX

√
detΣX , the values chosen correspond to signal-to-noise ratio of NS

NB
=

0.2, 0.4 and0.8, respectively. Common values for laser driven-to-dark current total charge
ratio at SPARC fluctuate around 0.4.

The values considered for µSN are {1, 2, 4, 10, 20, 40} · 10−3. The values considered for µPN are
{1, 5, 10, 15} · 10−3, normalized to 8−bit images full scale (i.e. the corresponding average gray
levels used to generate Poisson random variates equal 0.256, 1.28, 2.56, 3.84, respectively). The
distributions obtained have been interpolated and adapted to generate 16−bit deviates. This
induces a negligible distortion in the actual average value of deviates, except for the case µPN =
1·10−3, for which the effective normalized noise level corresond to 2.4·10−3. The values considered
for µPN, AS and AB reflect the requirement of producing 16−bit images with 12−bit quantization,
so that maximum gray level does not exceed 2nbit − 1 (mimicking a higher resolution than
that actually available). An example of the synthetic images is shown in fig. (16), while the
reconstructed r.m.s matrix as a function of n is shown in fig. (17) for several different values of
signal (AS) and noise (µPN, µSN) amplitudes.
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Figure 16: A synthetic image featuring a gaussian spot superimposed to a combiantion of both
impulsive and poissonian noise, plus a wide gaussian background. The following set
of parameters was used AS = 0.020, AB = 0.010, µPN = 0.015, µSN = 0.040. Gaussian
background (formulæ(28-30) is scarcely visible because of low contrast. For the case
shown the ratio between signal and background normalization is NS/NB = 0.2.

Figure 17: Reconstructed σxx, σxy and σyy vs n for the gaussian signal described by eq. (28)
superimposed to a wider, off-center gaussian background affected by impulsive and
poissonian noise (see eqs. (28-29)). Dashed lines correspond to exact values used
to generate the synthetic images. Coloured bands define the ±1σ region (computed
over a sample of 200 images) around the reconstructed value.
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In figs. (17) are shown the reconstructed σ’s for increasing AS/AB ratio (left to right) and
increasing level of both poissonian and impulsive noise (top to bottom) as a function of n. It is
clearly visible the effect of increasing noise on the statistical fluctuations, signaled by the width
of coloured bands, which delimit the ±1σ region around the reconstructed value.

V. IMAGE GALLERY. LASER SPOT. HIGH ASPECT RATIO.

In fig. (18) is shown the outcome of the procedure applied to an image of the laser beam used
to drive bunch emission from SPARC RF-gun photocathode. The offset subtraction described
in Algorithm (1), line (3), which is irrelevant for ROI identification (for the algorithm exploits
the effective level range in the image, line (7)), proves instead essential for this 12−bit image
(although the format is 16−bit indeed) affected by a tiny dynamical range of the signal compared
to the very large average background (due presumably to LabView’s convention for image data
storage). To images affected by this problem applies the remark at the end of sec. (IV), for
in these cases the ratio between average noise level and total is very close to its upper bound
κ/ 〈F 〉D ≤ 1.

Figure 18: Spot of the laser beam used to extract electrons from the SPARC RF-gun photo-
cathode. The red/blue ellipses identify the n = 3 contours for ROI’s and recon-
structed r.m.s. σ̂, respectively.

Figure 19: An electron beam spot (12-bit) image acquired during a 4-pole scan. As in previous
images, red/blue ellipses tag the n = 4 contours associated to ROI’s and recon-
structed σ̂, respectively.

Fig. (19) shows the spot produced onto the Cromox target by the by the electron beam during
a 4-pole scan for emittance measurement. The algorithm adapts nicely also to images affected
by a remarkably high aspect ratio.
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VI. CONCLUSIONS

In this note two algorithms have been discussed aimimg at

i) identifying the Region Of Interest the signal presumably reside upon. The algorithm does
not need any background image to be acquired, adapts well in a wide range of cases like
imaging of laser, electron beams of different aspect ratios and sizes. Analysis of perfor-
mances suggests that the core algorithm can reliably identify a ROI on an image-by-image
base in few tenths of milliseconds, to which must be summed the overheads due e.g. to
memory and/or storage; given these results, a real time implementation is more than a
chance;

ii) measuring statistical properties of the signal (2D r.m.s. matrix, centroid) essential for a
varieties of purposes (fine tuning of laser spot size and alignment, emittance measurement
etc.); the approach avoids the cumbersome task of a detailed disentanglement of the signal
from noise, making only a reasonable (yet unproved) assumption about the topological
properties of the background.

In a forthcoming note the practical implementation of the algorithm described above in the
framework of SPARC control and acquisition system will be addressed, along with the possibility
of obtaining substantial speed-ups through the deployment of the code on massively parallel,
multi-core GPUs[4].

.

[1] SPARC Collaboration. Homepage http://www.sparc.it.
[2] Wolfram Research Inc. Homepage http://www.wolfram.com/mathematica.
[3] GraphicsMagick Group. Homepage http://www.graphicsmagick.org.
[4] NVIDIA Corporation. Homepage http://www.nvidia.com/object/cuda_home_new.html.

Appendices

A. TRANSFORMATIONS IN THE PLANE: VECTORS

Let (ξ, η) be the rotated coordinate system where the ROI (see fig.(8)) turns to be an upright

ellipse. The associated versors ûξ, ûη can be expressed in terms of the versors ûx, ûy associated
to the camera frame in terms of a 2D rotation matrix:




ûξ

ûη


 = R̂ (φ) ·




ûx

ûy


 (A1)

where

R̂ (φ) =




cosφ sinφ

− sinφ cosφ


 , R̂−1 (φ) = R̂T (φ) = R̂ (−φ) (A2)

The vector associated to a given point on the plane can be expressed indifferently as

−→v = x · ûx + y · ûy =
−→
δ + ξ · ûξ + η · ûη

that is

−→v =
(
x , y

)
·




ûx

ûy


 =

(
dx , dy

)
·




ûx

ûy


+

(
ξ , η

)
· R̂ (φ) ·




ûx

ûy



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It is readily shown that



x

y


 = R̂T (φ) ·




ξ

η


 +




dx

dy







ξ

η


 = R̂ (φ) ·




x− dx

y − dy




(A3)

B. TRANSFORMATIONS IN THE PLANE: TENSORS

From eqs (7),(8) and (A3) follows that

w = R̂T (φ)ω + d

implying that

d2w =

∣∣∣∣
∂w

∂ω

∣∣∣∣ d
2ω =

∣∣∣det R̂T (φ)
∣∣∣ d2ω = d2ω

Moreover, domain (6) can be expressed in rotated coordinates as

D = ∆ ≡
{
ω � ωT · R̂ (φ) Ŝ−1 · R̂T (φ)ω ≤ n2

}

=
{
ω � ωT · Σ̂−1 · ω ≤ n2

}

where

Σ̂−1 ≡ R̂ (φ) Ŝ−1 · R̂T (φ) ⇐⇒ Σ̂ ≡ R̂T (φ) Ŝ · R̂ (φ)

(B4)

so that (B4) reads

∆ = D ≡
{
ω � ωT · Σ̂−1 · ω ≤ n2

}
(B5)

Since by construction Σ̂ (Φ) is diagonal

Σ̂ =




Σξξ 0

0 Σηη


 =⇒ Σ̂−1 =




1

Σξξ

0

0
1

Σηη




then

∆ = D ≡
{
(ξ, η) �

ξ2

Σξξ

+
η2

Σηη

≤ n2

}
(B6)

Note that the area of the the domain ∆ is

AD = A∆ = πn2
√
ΣξξΣηη = πn2

√
det Σ̂ = πn2

√
det Ŝ (B7)

Note also that d is the position vector of the point of coordinates (ξ, η) = (0, 0) in the rotated
frame:

I(2)
D (F ) =

∫

∆

d2ω F
(
R̂T (φ)ω + d

){[
R̂T (φ)ω + d

]
·
[
ωTR̂ (φ) + dT

]}

=

∫

∆

d2ω Φ (ω)
[
R̂T (φ)

(
ω · ωT

)
R̂ (φ) +

[
d · dT

]
+ R̂T (φ)

(
ω · dT

)
+
(
d · ωT

)
R̂ (φ)

]

= R̂T (φ)

{∫

∆

d2ω Φ (ω)
[
ω · ωT

]}
R̂ (φ) +

[
d · dT

]{∫

∆

d2ω Φ (ω)

}

+R̂T (φ)

{∫

∆

d2ω Φ (ω)ω

}
dT + d ·

{∫

∆

d2ω Φ (ω)ωT

}
R̂ (φ)

(B8)
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where

Φ (ω) ≡ F
[
R̂T (φ)ω + d

]

Result (B8) may be cast in the more suggestive form

I(2)
D (F) = R̂T (φ) I(2)

∆ (Φ) R̂ (φ) +
[
d · dT

]
I(0)
∆ (Φ) + R̂T (φ) I(1)

∆ (Φ) · dT + d · I(1)T
∆ (Φ) R̂ (φ)

where symbol I(n)
∆ is a nth-rank tensor representing the components of distribution’s momentum

of the same order with respect to rotated axes. Derivation of
−→
d ’s components in the rotated

frame

δ =




δξ

δη


 ≡




−→
d · ûξ

−→
d · ûη


 = R̂ (φ)




(dxûx + dyûy) · ûx

(dxûx + dyûy) · ûy


 = R̂ (φ)




dx

dy


 = R̂ (φ) · d

provide a way to recast I(2)
D (F ) in the more compact form

I(2)
D (F) = R̂T (φ)

[
I(2)
∆ (Φ) +

(
δ · δT

)
I(0)
∆ (Φ) + I(1)

∆ (Φ) · δT + δ · I(1)T
∆ (Φ)

]
R̂ (φ) (B9)

Much in the same way it is easily proven that

I(0)
D (F) = I(0)

∆ (Φ) (B10)

(conservation of distribution integral) and that

I(1)
D (F) = R̂T (φ)

[
I(1)
∆ (Φ) + I(0)

∆ δ
]

(B11)

In the case that the ROI’s center and the function’s barycentre coincide (i.e. I(1)
∆ (Φ) = 0) the

(B9) is nothing but the Huygens-Steiner theorem (connecting the moment of inertia of a rigid
body about any axis, given the moment of inertia of the object about the parallel axis through
the object’s centre of mass).

Moreover, eqs. (B9,B10,B11) establish the expected result that covariance tensors σ̂∆ (Φ) and
σ̂D (F ) transform consistently under the change of coordinates (ξ, η) → (x, y):

σ̂D (F) ≡ I(2)
D (F)

I(0)
D (F)

− I(1)
D (F) · I(1)T

D (F)
[
I(0)
D (F)

]2

= R̂T (φ)




I(2)
∆ (Φ) +

(
δ · δT

)
I(0)
∆ (Φ) + I(1)

∆ (Φ) · δT + δ · I(1)T
∆ (Φ)

I(0)
∆ (Φ)

−

[
I(1)
∆ (Φ) + I(0)

∆ δ
]
·
[
I(1)
∆ (Φ) + I(0)

∆ δ
]T

[
I(0)
∆ (Φ)

]2





R̂ (φ)

= R̂T (φ)




I(2)
∆ (Φ)

I(0)
∆ (Φ)

− I(1)
∆ (Φ) · I(1)T

∆ (Φ)
[
I(0)
∆ (Φ)

]2





R̂ (φ)

that is

σ̂D (F) = R̂T (φ) σ̂∆ (Φ) R̂ (φ) (B12)

Let us now compute

J (2)
D ≡

∫

D

d2w
(
w · wT

)
(B13)
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by exploiting eqs. (A1),(B6).

J (2)
D =

∫

D

dw
[
w · wT

]

=

∫

∆

dω
[(

R̂T (φ)ω + d
)
·
(
ωTR̂ (φ) + dT

)]

= R̂T (φ)

[∫

∆

dω
(
ω · ωT

)]
R̂ (φ) +

[
d · dT

]
A∆

From (B6) it follows that

∫

∆

d2ω
(
ω · ωT

)
=

∫ +a

−a

dξ

∫ +b

√
1−( ξ

a )
2

−b

√
1−( ξ

a )
2

dη




ξ2 ξη

ηξ η2




where

a ≡ n
√
Σξξ

b ≡ n
√
Σηη

which implies

∫

∆

d2ω
(
ω · ωT

)
=

1

4
πab




a2 0

0 b2


 =

n2

4
A∆




Σξξ 0

0 Σηη


 =

n2

4
A∆Σ̂ (B14)

that is

J (2)
D = A∆





n2

4

Ŝ︷ ︸︸ ︷[
R̂T (φ) · Σ̂ · R̂ (φ)

]
+ d · dT





= AD

[
n2

4
Ŝ + d · dT

]
(B15)


