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Abstract

A robust algorithm for image analysis and emittance cattriarom 1D pepper-
pot measurements is presented here. The need of a robusbasidtent algorithm in-
creases when not only the beam parameters at a fixed pointeasuned, but the evolu-
tion of such parameters along the direction of beam propagaln this case indeed, the
extracted values have to be compared one with each othesiacd,the parameter varia-
tions and oscillations can be very small, one has to maketsat¢hese variations do not
come from different signal treatments, but they have a glaysneaning. The program
is divided in3 main routines: the image analysis, the data cleaning, antlélce space
reconstruction. Each of these routines is described inlgetgether with the choices
done at any single step. Some tests on the image analys aisalytical profiles are
also presented, to better understand the limitations odldparithm. Used thresholds are
physically explained, and an overview of the used procettureconstruct the trace space
from the data is given.
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1 Introduction to the method of measurement

The Emittance-meter is a novel diagnostic used to measeiteghsverse emittance along
2 meters in the cathode vicinity. The beam in this region esijuelativistic and the clas-
sic method such as quadrupole scan can not be used since %edéeam energy and
electron density internal collective forces (space chgoiey a dominant rule in the beam
transport. The classic matrix formalism can’t be appliekssa matrix formalization for
the "space charge kick” and a distributed model are intredyf4]). The alternative way
is to build a system where the beam, starting from a fixed jposits no longer subject to
internal forces, decreasing its current as much as neededke beam evolution domi-
nated by initial temperature from that position on. The estsivay to make it is using a
collimator that stops all particles but that fitting troughdecreasing its current. The exit
beamlet is no longetspace charge dominatedand, giving it the time to evolve over a
certain distance, one can observe light emitted from aillatidn screen hit by the beam.
If the collimator is a slit, it cuts the beam only along a sfiedi axis (X or Y); moving
the slit in different positions along that axis, the beamdmpled. From the beamlet
image, a profile along the sampling direction is obtainetégrating the image over the
other axis. Analyzing the profile the beamlet initial (at ¢ position) mean divergence
and the velocity dispersion along the sampling directiendeducted. By doing this for
different slit positions, and correlating position andediyence, thé D emittance can be
calculated, and phase space reconstructed. A novel dewdkagiuse of this principle
has been built at SPARC photo-injector, in order to betteeustdnd, control and manip-
ulate electron beam created by the laser-cathode-gumsyaiel calculate the maximum
exit transverse brilliance.

Since the beam properties have a big range of possible valifescible device is
needed, in which all the measurement significant distarsces) as the step between one
slit and the following or the distance between the slit aredgtreen, can be changed any
time. The single slit method is used, where a single slit m@leng the beam transverse
dimension making several samples in different positionke Mumber of samples and
the relative distance are free parameters. Single slit odeltas the drawback to be a
multi-shot measure, opposite to the single-shot multirskthod, in which however the
flexibility is much less (the number of slit and their relatdistances are fixed parameters
this time).

The measurement procedure consists on beam tracing alerrgeghsurement re-
gion via an envelope scan first, calculating the beam cehttnd rms dimensions in a
variable number of points. In this first step the slit mask«igsacted and images are taken
looking to the entire beam on the Yag:Ce screen via:al.5 imaging optics. Then an



automatic emittance scan measurement starts, making ysewbusly calculated pa-
rameters to center the slit and fix the slit step in differesgifons.

The slit method is well known in accelerator beam physicsdiagnostics, and lots
of references are available in literature. We refer to 2&fgr details. In the following a
qualitative understanding of the method is given. Starftiag the end, the RMS formula
for emittance calculation (see for example ref.[5])

Ene = By (22) (22) — (za/)? (1)

wheres and~ are the Einstein coefficients,is the spatial coordinate, aadis the deriva-
tive of x versusz, i.e. the angle of the velocity vector respect to the idegettory ¢).
The formula already gives us indications on what beam patersieeed to be measured
(space, angles and energy)and what are problems with esetraeasurements: overall
it is visible that emittance is calculated from the diffecerof two big numbers (order
of 107%). This difference has to give results of the order 6f'2, meaning that the two
guantities inside the square root need to be calculatedprenysely.

While it is easy to extrapolate the beam position and dimessat any place, even with
self forces acting on the beam, to calculate the divergemamne place one need two
measurement points. Independently from the quantitiesured at each point (that can
be magnetic strength or beam dimension, depending on tlieydar measurement), the
hypothesis is that the beam evolves in between just undémfthbence of measured initial
quantity and, in case, some other externally applied fordéss hypothesis is no more
valid inside a "quasi relativistic” dense beam, where akslb ferces play a rule. In this
case the evolution of the beam can’t be described withouwvkigalso the initial beam
density and divergence, and without having a perfect moflglta-beam interactions.
In such a beam the single particle divergence is changing frme to time, under the
influence of self forces: this is definitely the cause of quaathdike measurements failure
in SP dominated beams (ref.[6]). The position-angle cati@h also is changing rapidly
in a way not only dependent from initial conditions.

A MATLAB based software has been developed for image maatmn and pa-
rameter extraction. A lot of work has been done in image iritgeand data analysis, in
order to create a consistent and user-friendly programltulede beam parameters from
raw data. In following sections the main parts of the progvéltie explained separately,
and the choices made to analyze data presented.

In fig.(1) is showed the entire program dataflow. | consistg principal routine
(the first four rows of dataflow in picture), followed by othelditional routine for trace
space movie and visualization (last two lines). Theserlatietines do not participate to
the data analysis and emittance calculations.




EMETER ANALYSIS TOOLBOX:
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images ——— Emeter_analysis.m info.txt
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thresholds ___, Emittance.m EmitData.txt
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\—' PhaseSpace.txt
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PhaseSpace.txt . PSinterpMain.m ———— Nolntlnter;I)c:Ia;ch,iSPf_S fig.
PSaxes.txt nterpofate '9.

Figure 1: The analysis software data flow. To each line cpoeds a separate routine;

In the central column of the picture the routine names arétew; the input pa-
rameter of each routine are summarized on the left columievtre right part show the
specific routine output. As can be seen from the picture, gxoe the first routine, all
the others have input parameters depending from the preveauthat there is a precise
order that has to be followed, to run the program. It is theepttiat goes from up to
the bottom of the picture. The first routine takes as inputrtve images, and it gives
as outputtxt files with parameters obtained from image analysis. Thisimewcontains
indeed the algorithm developed to find and denoise the sigaklulating the needed val-
ues. It takes time (about 40 minutes) to analyze an entir¢t@moe scan3( different
emittance measurements, with slit position per measure and ab@gtimages per slit
position, leading to abouit1700 images), while the others are much faster (less than a
minute). This is the main reason that lead us to divide dffietogical routines in four
parts, giving the possibility to run them independently.

The second routine takes as input the files saved by the fiesaond calculates the
emittance in two different ways that will be explained ex$tauely in section 3.

The third routine reconstruct and save irt# file the trace spaces for each single emit-
tance measurement, while the fourth interpolates theseesga obtain more sampling



along the abscissa, and than calculates the emittance Fermnace space, with the de-
sired cut in charge (by default the 95% of the beam chargeaid)us



2 Singleimage analysis

Data filtering is probably the most delicate step in all therermeasurement process, the
art to manipulate data stored and extrapolate from it thet@dhparameters value clev-
erly distinguishing noise from signal, deciding what islase and what fundamental. In
our case, the data taken are beamlet images, and we wouli ldevelop an automatic
procedure (given the amount of data stored) to analyze tbleonsing MATLAB as pro-
gramming environment. The parameters to be extrapolated iimage are: beamlet area
(proportional to the number of particle passed trough todlitg its centroid, and the
rms width along the direction perpendicular to slit edgespréfile along that direction
is indeed extracted form the image integration along theradixis. This profile is then
manipulated to calculate the needed parameters. Furthertie knowledge of the slit
center, the slit width, and the distance between samplidgraaging plane, permits the
rms emittance calculation. Obviously to know the normalizenittance also the energy
has to be measured. The formulas that we use to calculatéegrefitroid ad rms are the
weighted means:

A= Zai; (2)
=1
7 — li o (3)
T = A2 a;x;;
() = LSt = LS a2 (4)
A Z:1 (3 3 N Z:1 1% bl

Wherea; is the profile value (y value in the example profile of fig.(2))-&h position,
corresponding to the integrated i-th image line (or colynamdz; is the corresponding
abscissa value (x axis in the example profile of fig.(2)).

A systematic study of images acquired has been done fixingtigees of variability
of parameters to be extrapolated and other important giemti

e A baseline on the profile is always present, whose value dbpethe camera gain,
but for our typical measurement is always around;

e Noise level peak to peak is arougd0 A.U.(depending from gain), randomly dis-
tributed on the baseline;

e The signal peak varies fro®00 to 8000 A.U., depending from gain, but mainly
from which part of the beam is sampled;

e The profile rms width is strongly related to the beamlet djesice at the slit plane.
It is proportional to the uncorrelated spread in angles oughly speaking, to



the transverse trace space thickness at one fixedlue. Studying the different
trace space reconstructed (the reconstruction methodwiéxplained in section
4) from measurements, and looking to some selettedreme” trace space plots,
we found this spread to be betweerR and 1mrad. If one consider the distance
between slit and imaging plane equalti)mm, and the virtual dimensions of the
camera pixel (physical dimension times the optics magi@iog the expected rms
width range goes frorh to 20 pixels.

e The signal centroid can be everywhere inside the profile.

0
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Figure 2: example of data; beamlet image and its profile.

For a particular measurement all the mentioned values havelations, so that it
is not obvious to associate for instance the smallest pnfdéh with the highest profile
height. If one has for examplelatterfly-liketransverse trace space, there is an inverse
correlation between height and rms, i.e. the bigger therlditie smaller the former (see
for example fig.(14). On the other end the correlations chdogdifferent measurements,
and considering the entire data set, every combinationgsiple.

2.1 Signal detection

Once the profile is created from image integrating it alorgydinection normal to the slit
motion, the first logical stes{gnalDetect.nis to select a region of interest containing all
the signal, and extract it. At this point were not intereisiie finding exact output values
for the signal, so that, even though signal shape changepletaly between different
measurements, the signal is fitted with a Gaussian-pluslibagunction:

(3v—c)2

f(x)=a-e 22 +h. (5)




emeter analysis.m

default
e

profNoBsin cleanedProf
rawprofiles ASD_prof cleanedProf_bsin
|
1 |
I |
! I
|
images readlmgs 1 signalDetect signalCleaning

Choose the profile type

Save Data singleProfRmsCalc

Figure 3: Analysis program dataflow; the names inside blue$&are the code function
names. Red dashed points are positions were the differaables are extracted and can
be saved.

Initial fit parameters are calculated using as function lhie{g) the maximum of
the smoothed profile (moving average with 10 pixel averag@t as temporary centroid
(o) its position; to calculate the initial baseling) (@nd sigma £), an initial window cor-
responding to a width that would have a signal withrad angles spread (4 times the
maximum value possible for our typical beam) centered atdbhe maximum is taken,
and the baseline is calculated averaging all the pixel outioflow, while the initial rms
width will be that of the signal inside the window. At the ein@ tcentroid is recalculated
as the ROI-signal RegionO f Interest) center of mass. This last action turned out to
be very important, because, as we’ll see later in this se¢tee for example fig.(4), the
signal is not always symmetric respect to the maximum, aaccénter of mass can be
slightly different from it; this operation allows to centie final ROI respect to the whole
signal and not just to its peak. There’s ag@riori reason to give more importance to the
stronger signal than to the weaker. From the fit one gets nesy cemtroid, height and
baseline of the profile. The original signal is now manipeditsubtracting the baseline
and limiting the region of interest t&¢5 sigma around the centroid. The function outputs
are:

1. the original signal without baseline (variable namedaghe programProfNoB-
sln);

2. the new region of interest containing all the signal whie baseline subtracted
(ASDprof , After Signal Detection profile);
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Figure 4: Example of region of interest selection for twdetént input signals; the green
curve is the raw signal, blue curve is the fitted curve, andentgcurve is the output

signal, after signal detection.

3. the baseline itselb@seling;

4. centroid AsdCentroidlin pixel, area in A.U.AsdAred, and rms width already con-
verted to radiansAsdSigmajp

2.2 Signal Cleaning

The following step is trying to precisely discriminate weehe beam signal starts, sep-
arating it from the sea of noise. This is probably the mostartgnt chain mail of all
the procedure, since the output parameters will stronghedd on the choices done at
this point. The core of the routingignalCleaning.ris an iterative procedure that, start-
ing from the output signal of previous function, calculaties profile centroid and RMS
width, then shrinks the region of interest+@ rms around the centroid, and recalculates
the same parameters again. Then it compares the new valirethe/iold ones and keeps



going until they match each other. This procedure makes fuseodifferent facts:

e after the detection and the baseline subtraction, the rénganoise in the signal
vicinity fluctuates around zero, with positive and negatiglies; since the profile
values represent a weight in the rms formula, negative nusnieed to decrease
the rms value, so that until negative values are presentarsitimal, the window
continues to shrink.

¢ In the signal vicinity the signal mean starts to increasenfe@ro, since signal tails
add to noise; moreover the baseline calculated with thedidlenthe previous func-
tion is sometimes slightly underestimatédi(— 0.2%), because of the superimpo-
sition of the Gaussian tails.

Together these two points make the algorithm work. At theitiesation the function cal-
culates an rms value that leads to a smaller window than thielaane because of negative
values, but bigger than the right one (that of an ideal prafita only signal, no noise and
baseline), because positive and negative values are rfecpgibalanced (second point
in the above list); the second iteration does the same, utithe both the contributions
(the one that tends to decrease and the one that tends tasegseill be smaller, because
of less noise inside the window, and so on. At a certain pbiatieginning of the signal
under the noise will lead to a rising mean and the two "force#l’come to a balance.
Typically the procedure converges after 5 iterations to the equilibrium point. The local
mean of the signal acts as a friction, a "force against movein&here movement means
the tendency to erode the signal, and its rising toward theasimakes the force strength
directly proportional to the distance from equilibrium. \@wsly a percent of the signal
will be lost before reaching the balance. For a given level@$e, the absolute area of
signal lost is more or less the same for every kind of signai,the percent respect to
the whole signal area depend on the signal-to-noise rdi® joint will be demonstrated
with tests later in this section). The outputs are:

1. the cleaned profile, i.e. the portion of the profile thatghmgram has recognized as
signalCleanedProy;

2. same as above but with baseline addgéegnedProfbsin);

Lots of tests with different signal shapes and SNR have beee tb validate this algo-
rithm and will be summarized at the end of this section.
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Figure 5. examples of different signals cleaning: red cusvihe original signal, blue
curve is the gauss fit to detect the signal, and green curteisigjnal after cleaning. In
the signal region the red curve is not visible because itpesmposed to the green one.

2.3 Resultscalculation and saving

The last step is to calculate the values for needed parasn@mgleProfRmsCalc.n
This is done using the same formulas as above(egn.(2)j33{@lied to the cleaned pro-
file. The output of this step is a vectdim@alData) with the values needed. After all, data
are saved inside a foldetHlaboratedData”) automatically generated by the program at
the same level of the data folder, also reproducing the saatee sib-folder tree. The
output vector is then saved in the homonym elaboration faéléhat from where images
were loaded. The file that contains the elaborated data basathne name of the images
folder (for exampldend01.txt. Since this program has the possibility to reconstruct the
phase space, one needs to save also the prgfilefd(.tx). Any of the above indicated
profiles can be saved, but by default the raw profiles withasebne are chosen.

2.4 Testson theimage analysisroutine

As said before, a big number of tests have been done on thethigdo validate it. In
the following we want to show the results of these tests: afgettofile vectors reproduc-
ing all the possible data profile has been created (with aticowi random noise), and
given as input to the program; the comparison between tHerefile values and those
reconstructed by the program after the detection and eiggriocedures will be shown.

Looking at the data, one observes that all the possible leamistributions lead to
2 different type of profiles:

e signals symmetric respect to their maximum,; this kind ofadzdn be well repre-
sented as a truncated (or not) Gaussian;

e signal not symmetric respect to their maximum; in this cassaussian functions

11



are needed to represent it. The second Gaussian typicallydsiook like a small

bump on the main signal tail but, depending on the situationgxample in the

solenoid scans), can be also at the same level or bigger tieafirst one. Tests
varying the height and the distance between the two sigreais been carried on.
Obviously also the width of the second gaussian will vary, the results are not
reported, since the algorithm is not sensible to this patame

It is mandatory to start the algorithm test with a single Garswithout noise, just to see
what appends with an ideal profile. A Gaussian profile witlfiedént sigma and heights
is used as program input, and results are summarized on t{@® fig

100

200 300 400 500 600

X (pixels)

REAL VERSUS PROCESSED

= rms ratio, sigma init=2
= Area ratio, sigma init=2
A— rms ratio, sigma init=4
4 Area ratio, sigma init=4
4 rms ratio, sigma init=8
+  Area ratio, sigma init=8

2L : S 3 : 3
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Figure 6: the upper figure shows a particular input test gdfieight5000A4.U., 0 =
8pix) in red, superimposed to a black dotted curve, the procegsede. The lower
graph summarizes the test results for different gaussemd heights. The numbers don’t
change with height because there’s no change in SNR (the rszero).

The upper picture of fig.(6) shows a particular input testifgan red (height5000A.U.,
o = 8pix, No noise added), superimposed to a black dotted curve rtioegsed profile.
The lower graph summarizes the test results: omtlais the height of the gaussian is
reported, while the, axis represents the ratio of the areas (red markers) and radtlssw
(black markers) between starting (real) and processederddifferent marker shapes
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represent different of input gaussian, from to 8 pixels. The reconstructed areas are
almost independent from Gaussian parameters (the ratis teril increasing the rms of
the initial signal, but it is always aroun9.6%). In the case of rms widths the difference
is slightly bigger, but always not relevant (not less than.5%) . The numbers don’t
change with height because there’s no change in SNR (the orero) In this case the
difference between the real numbers and the reconstruntes) © due to the fact that the
program cuts the profile, identifying only the values insigiesigma around the centroid
as signal. Obviously this choice is not the best for this lidese (the rms calculated
will be the sigma 0P9% of signal), but it was found to be the optimum when the noise
Is added. After this point in fact the SNR become too smaldl #re rms calculated is
affected overall from noise; moreover the value becomeg sensible to the last-point
choice. The second test was done with a 3 sigma truncatedsfaauadding a baseline
but no noise, trying to see some difference from the above. d@esults are summarized
in fig.(7).

—m—rms ratio sigma=2

REAL VERSUS PROCESSED | " Area ratio sigma=2
—A—rms ratio sigma=4
—4A— Area ratio sigma=4
—+&—rms ratio sigma=8
—+&— Area ratio sigma=8
1,00
00 * * *
AAA A A A
o E— D ————
=
o
AAA A A A
[ 1] ] | | | n
0,99 T T T T T T T T T T T
0 2000 4000 6000 8000 10000

Gaussian height (A.U.)

Figure 7: Results of the tests with a truncated Gaussianidrcéise the ratio is very close
to one.

This test has been done because the image profile to analyzehawe infinitely
long tails but it'll drop off to zero (as every real signal @peResults are better than with
the entire function both for area and rms width, but the tagitefits more from the cut. It
can be understood thinking that the same cut in area willyedifferent effects on the
rms, depending on the distance between the signal mean amdittzone barycenter; in
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our case tails carry a very small fraction of area, havingdwax a non negligible weight
in rms calculation.

Itis worth to note that (as seen in the previous test withligaassian without noise)
the program works also for ideal profiles, although the merdma that makes it work is
different from that described before for the case of noigynal: once the first region is
selected from the fit, the program calculates the rms valdesannks the window to 3
rms, wasting thé.4% of the beam. At this point one has a truncated Gaussian, &d th
rms will be in the worst case’% of the previous one (as can be seen from the fig.(6)). If
theo is such that the percent left is equal or more than 1/3 pbelX 1) the window will
shrink again about that quantity, but this time the situatdll be that of the fig.(7): in the
worst case the new rms calculated will be 99% of the previand the algorithm will stop
unlesss < 34 (1% of sigma should be bigger than 3, from the same condisdrefore).

It is impossible in our case to have such a big value. Thisstestmple has been described
just to understand the procedure, but in reality the limiesrauch less tight, since going
up with the profile width, algorithm become more and more igee¢see fig.(7)).

The next step is introduce noise and simulate a real inpdtigrd-irst test were
done with a single Gaussian, (truncated or not), adding ataohbaseline1(0000 A.U.,
the typical extracted value), and a random noise (whiteenaisiform distribution) with
a peak to peak values 800. The SNR was varied changing the signal area and height.
Moreover, for each profile a noise-dependency study has t@®® generating0 times
the noise vector added always at the same signal and progeabs overall profile, to
understand the sensibility to spike position and to noigeepain general. So from now
on every graph will have points (mean values) with error bagdculated as standard
deviation of the mean divided for the square root of numbemaoéasurements(50).
With the single Gaussian test we would like to demonstragdithits of applicability of
this algorithm, and also understand if there is a dependehttye results from position
of beamlet in the image (the fit could work better in the cdntiadow zone than in the
lateral). Figure(9) shows the results obtained from sigglgssian tests. On the y axis is
shown the ratio between real parameters (that calculafedda@dding baseline and noise)
and the reconstructed ones, at the program exit. The firsigilee area ratio, that gives an
idea on the fraction of the beam left out from reconstructi®bviously it decrease with
the increasing of SNR (defined from now on as ratio betweers§ian height and noise
level B00A.U. ), so directly proportional to the axis), because of the decreasing of the
beam fraction hidden by the noise; the precision also raigbshe signal width (different
curves). The same can be argued for the second graph thesesps sigma ratio between
the real and the reconstructed rms. In this case the firstgare less precise respect to
the same in the upper graph, since the hidden signal is alarayise tails and, although

14
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Figure 8: different examples of input profiles used as tést;upper left and upper right
profiles are single Gaussian with different heights and aigmoreover the second one
is truncated to+2.50. The lower right and left profiles make use of 2 Gaussian with
different centers and widths. In both cases the entire kigneuncated tot+30. These
last2 profiles should reproduce real signals such as those of)ig.(5

the area fraction can be small, the tail contribution to the s relatively big. Also the
error bars tend to decrease going from left to right, meattiagnoise pattern sensitivity
decreases. In both plo#9% precision is reached for the lower curvé¢ma = 5), when
the profile height reaches approximatéhp0 A.U. ( black vertical line).

Figure 10 shows results obtained from input signals witfed#ht centroids. Since
the images aré40.X480 pixels, after the integration along one direction the risgl
profile will have a length equal to one of those two values éieling on the direction of
integration). In the case of fig.10 a test profile vector of 6/ments has been created,
and the centroid profile moved first of all on the lefti(ean = 100), then on the center
(rmean = 320) and on the right{mean = 540). The plot shows that there is not
dependency from profile centroid position, since the atgorioutputs are the same for
different signal centroid positions. The plot shows onlst tdone with a Gaussian with
o = 5, being this the minimum width possible in our case (see 2 iari?) therefore the
most problematic.

Another point that comes out from the fig.(9) is that, alsoldigy SNR, the recon-
structed width never reaches the real value (then last pothe graph i9).985). This is
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SINGLE GAUSSTIAN COMPARISONS
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Figure 9: Results obtained from a noisy test profile as progrgrat. Each curve has
different width, so that it clearly shows that the precisarthe reconstruction depends
both on SNR or signal width. Dividing the x axis (Gaussian mmaxn) for the noise level
(300A.U.) one obtains the SNR.

a due, as said before, to the infinite tails of the test functised. Next graph (fig.(11))
shows the same tests as above done with a truncated{tpGaussian, something closer
to the real image profile. The main differences are the stduies ¢ = 500) closer to the
real one, and the "asymptotic value”, equal to 1. The SNRev&bu which one has the
90% in the lower curve is always around00, but this is probably due to the fact that the
difference between the two above cases tends to decredse@stile intensity increases
(the tails weight in the rms decreases).

Last test was done with a double Gaussian:

(zfcp)2 (1765)2

f(x)=a,-e 2% 4a,-e 22 +h. (6)

The first gaussian was left constanitp= 8pix anda, = 3000A.U.. the choice of
these constant parameters has to be discussed: the doalsién-like profile comes out
when the beam is represented by an X-shaped trace spacés tase the profiles from
central slits are unaffected, such as that from lateralstitg] since the second branch is
usually shorter and less intense. The problem is visiblg iorthe slits between the center
and the end, the middle-lefts and middle-rights, so thaptiveipal signal has always an
intensity and a width of the order of the fixed one. The paransaif the second Gaussian
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Figure 10: there’s no dependency of final values from beaceletroid position.

are varied according to the real data:

e Heighta, betweerb00 and5000;
e Sigmao, betweerR ands;

¢ Relative centroid distande, — c,| betweenl and3 timeso, ;

In fig.(12) we summarize the test results for the maximum ro@htrelative dis-
tance §o,), since this is the worst case for the analysis. The expquigiolem was the
possible width underestimate for small values of seconds&an maximum, since its
area is small compared to the total signal, while its contidn to the second moment
of the distribution is not negligible because the relayveig distance from distribution
barycenter. The expectation was wrong, as can be seen feograiph of fig.(12), since
also for small values of second peak, the algorithm succeedsconstruct the parame-
ters, i.e. the ratio between the real and reconstructednaeas is always very close to
1. One probably needs to go even more down with values to seéitid of error. The
error bars slightly decrease with SNR, being always bélthand demonstrating a small
dependency from noise pattern. On the next graph (fig.(h&))rtore critical points are
showed (those with minimum SNR) for different second-peattid. This gives an idea
on what is the maximum expected deviation from real in theses, and its dependency
from noise pattern.

Before the end of this chapter we want to give an idea on whath@éwo limit
situations that can be encountered while analyzing data.todke two different sets of
data, with different trace space shapes.
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Figure 11: Test results with a truncated Gaussian; diffs@erirom the previous case are
the start ratio ( bigger in this case) and the asymptoticeyadqual to 1.

Both the measurements were taken on November the 26-200& satne starting
conditions (same solenoid current and RF phase), but atefiffdocations. The first
one was taken positioning the Emittance-meter280mm from the cathode, while the
second one was at89mm away from it. Figure(14) is a sketch of the profile rms width
(the points have as error ba3 times the profile rms width) as a function of the centroid
position. It is not a trace space plot, since the orientasowrong, but the thickness
and the shape of the figure are directly proportional to tledsbe phase space plot (for
its precise drawing we refer to the section (4)). As can baste plots have different
behaviors: in the first one the width increases moving awamfthe center, so that the
profile with smaller area will have bigger rms; in the secoketsh the opposite situation
is observed, i.e. an inverse correlation between distanoe dentroid and width is found.

The physical explanation of the two different shape is odhefscope of this chap-
ter, but qualitatively it can be understood knowing thatt freeasurement (upper plot
in fig.(14) was taken in the vicinity of the beam waist (afteagnetic focalization by
a solenoid lens) and its butterfly shape is due to differemgitodinal slice waist posi-
tions. It is a direct consequence of beam correlated engngad coupled with the lens
chromatic aberrations. The second measurement (lowermpfa.(14) was done at the
beginning of the after-lens drift region, where the entieatn is convergent.
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DOUBLE GAUSS. COMPARISON (3 SIGMA PRINC. DISTANCE)
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Figure 12: Results for the algorithm test with a double Gaussihe SNR between the

second Gaussian and the noise has been varied, leavingstrengrfixed. The results are
always in good agreement with real values .
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Figure 13: The graph represents a portion of the above pdimdse with the minimum
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19



BUTTERFLY-LIKE PHASE SPACE

450
400 A
£ 350 I
2 1
‘s 300 I I
= 250 =
S 3 RMS width
Q200 I

150 L 1 L 1 L 1 L 1 )
1 3 5 7 9 11 slit number

330

1Ty,

240 4

profile pixels

210 4

180 -
BANANA-LIKE PHASE SPACE

Figure 14: Two different beam behaviors, showing diffesp@ce-divergence correlation.
The upper plot shows autterfly-like” shape, while the lower one show&@nana-like”
shape.
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3 Emittance extrapolation from data

Once the area, centroid and rms width have been extrapdiatedeach single image,
covariance matrix of bearfx — ') distribution can be calculated. For each slit position
in a measurement a certain number of images (variable frotm 30) is acquired, leading
to the same number of values for each of the 3 parametershedetonstructed values for
a single parameter should be identical for a fixed slit nunalpercathode distance, but in
reality both the system instability (fluctuation of paraerstfrom assigned value) and the
(small) dependence of image analysis algorithm output fnoiee, lead to a shot to shot
values fluctuations. Moreover electric field dischargeb@&gun, beam-RF dephasing and
other temporary problems may lead to images without sigmaVjth signal properties not
consistent with the specific situation.

Before to start the routine explanation, it is worth to uniderthat the control room
measurement procedure is totally automatic, so that theatgrehas the only assignment
to fix the starting position and push the start button.Fotaimse a complete emittance
scan for 30 different distances from cathode takes aboutidGtes; during this period
everything can appends, from discharges to laser stopg wiglacquisition continues, and
only the operator problem-solving skill determines thergiiga of blank or wrong data.
With this in mind it becomes obvious that, analyzing dataglaust cleaning procedure
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has to be implemented to reduce the effect of systematicserro

The Emittance.nroutine dataflow is showed in fig.(15).Taking as input theorec
structed values frorameteranalysis.mthe routine cleans the set of data from bad values,
and calculates the beam parameters with to different methtmte making use of aver-
aged slit parameters and the other that averages diffemgtthaces calculated using each
single parameter. In latter case also the error bars canlbdated.

All subroutine called during the execution are represehyeolue boxes. Following
the timeline, the routine main tasks are:

1. Get data from files saved by the previous progrdaetData.n ;

2. Single image cleaning; at this point any data vector oflsinmage (area, cen-
troid and RMS) is individually analyzed. The algorithm applisome thresholds,
taking decisions of keep/discarding the specific image aedr¢lative data vec-
tor(CleanData.nj

3. Single slit cleaning; every data vector relative to angméhat overtakes the pre-
vious controls, is compared with the others belonging todhame slit position.
Statistical quantities are used, such as mean and stanelaedidn of dataset. The
tails of the distribution are trashed in the effort to redsgstematic errors and with
the goal to leave only the most probable valu€mr(ectSingleData.i

4. Mean values cleaning; from the remaining values (dgtaseean value per slit po-
sition is obtained, and looking to its standard deviatidresquality of the specific
dataset can be extrapolated, deciding whether it can betraes not, CorrectMe-
anData.n);

From now on the routine dataflow bifurcates in two branchespne below (branch
A in fig.(15)) calculates the beam characteristics¥ands) from averaged parameters.
From every slit position acquisition comes out only one @eof 3 mean parameters (cal-
culated using values that survived to the controls desd@®ve), and only an emittance
value is reconstructed from the following steps:

5a. A new average from the remaining values is calculate@very slit, and a mean
vector (area, width and centroid) is producachggeAveraging.im

6a. Mean values correction; mean parameters from diffesistare now compared
to verify the consistency of the whole set of data, and ctimgcestrange and im-
possible behaviors ( due for example to a system failuregkt@nds for a period
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comparable with a slit time measurement, 4-5 seconds). ealfifit of central slit
centroids is carried on and deviations of mean values froeali behavior analyzed
(RemoveLateralSlots)m

7a. Emittance final calculation [2]; first and second ordenmants of both spatial and
angle distribution are calculated, including their crassrelation. Distributions are
sampled by the slit positions, so that the moments are eabalibs discrete sum of
weighted values (the weight is represented by beamlet,gemjttanceCoreRou-

tine.n).

The dataflow branch B an alternative way of data treatmerthisrcase the averag-
ing is done at the end on the emittance value itself, i.e. Wieeage is directly applied on
the final result. Suppose for example to analyze a measutewtéri5 images per slit po-
sition, and suppose that only 10 of them survive to cleanimyarrection procedure; for
every slit position one will have 10 areas, centroids andwma$hs. Instead of averaging
them and use their mean value to find the result, we randorstycéste each single value
with others relative to different positions, and calculateifferent emittances. This can
be done since now each single value measured is supposedriddpendent from the
others; eventual systematic effects that correlate data been corrected at this point,
and the remaining data fluctuations are the superimpofialifferent independent sta-
tistical fluctuation sources. With this method indeed adl plossible sources of error are
taken into account, from the instability of the whole appasao the reproducibility of
the analysis software outputs. All together these souraid bp in the error bars.

The procedure is as follows:

5b. The first subroutineRemovelateralSlots)rhas already been described. The only
difference in this case is that while the fit is done on the meamtroids of cen-
tral slits as before, the comparison is done between thd fitie and each single
data, correcting in case the single data and not the mear @hline specific slit
acquisition;

6b. Creation of datasets for emittance calculation; in th@ottyesis that all data from
successive shots are independent from each others, gadrdatordered and ran-
domly associated to others to create complete datasetsnittaace calculations,
(ShuffleData.m

7b. Select the created datasets to use in following stepgemeral each slit position
will have different numbers of good data. In particular tatgositions often have
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less usable measurements; if one does not want to use fistliieam size has to be
careful in this choice,jataSelect.ry

8b. The same subroutine is used to calculate the emittaBoeitanceCoreRoutine n
but this time it is repeated for the number of independerdasids created;

9b. Arithmetic mean and standard deviation of emittangahablnd beta parameters are
calculated. Experimental standard deviation (uncesistthen found using the
type A evaluation (i.e. dividing for the square root of numbgdata the statistical
standard deviation, refer to ([1])).

In every kind of measurements there arerror sources: systematic and statistical
errors . The task of the first four points described above) sisadhat of point§a and5b,
is the minimization of systematic errors, without affecttistical fluctuations. In the ideal
case in which this goal is perfectly reached, the two mettstdaild give close results,
because statistical fluctuation does not affect the mearesal The differences in this
case mostly depend on selection of dataset to use in thelbEnkloreover there is a
theoretical difference: the mean of a function is equal &oftmction of the mean only for
linear functions, and that is obviously not the case for thétance as function of second
order moments (see eq. (1) for rms emittance).

Before to go into details to justify choices done while trytogdentify and exclude
data affected by systematic error, a little explanationt@nrheaning of red dotted lines
and dotted boxes in dataflow (Fig.(15)) is necessary. Reddlbttes represent diagnostic
points in dataflow, where it is possible to save and plot mi@ion about excluded data
until that point for each single folder, understanding wisathe impact of every single
subroutine on the total amount of data. Beirdgthe number of slits positions, the total-
ity of data for a single measurement is represented by axnaitih 13 columns and as
much lines as the number of images collected for a single szanpling. The subrou-
tine (footprint.n) saves pictures for centroid, rms width, and area matrveggesenting
as blue squares the excluded data, and as colored (128 sptmuares the good data
(see Fig.(17)). These pictures, besides the informati@utathe number of remaining
images, give a qualitative information about the goodnésteaning procedure: colours
gradients can help the operator in identifying eventual consistent data survived to
controls. Moreover differences between before and after sfauffling can be understood
and number of measurement to use in the brandb&gSelegtchosen by eye.

The dotted boxes are points in which indexes of survived lpoftan be saved
in .txt file for future trace space reconstruction. Any of this paivies to the user the
possibility of plotting (using another function later eapied) the trace space, using only
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profiles that reach a particular dataflow polRndBadProfiles.jn A comparison between
different trace spaces is possible in this way, helping &pgically understand which part
of beam is trashed, in case it is, deciding for example if ihaskground noise or real
signal. Violet words are the exact names.tt files saved by the program. Dataflow
objects representing these two last subroutine are dradotiad lines meaning that their
execution can be excluded anytime from dataflow withoutcéffig the final result.

Let's start with explanation of choices made to excludeeaysttic errors. First of
all it has to be pointed out that the value of every threshaldimeaningful parameter is
asked at beginning by the program and can be changed anytistedy sensitivity to it.
Here we want to argue the chosen default value.

We start from the Single signal cleaning routine (point Zhie kist). As said many
times, from a single profile analysis 3 numbers are extracéeda, centroid and rms
width. The considerations done in section (2) about the eepevalues, help us to fix
some thresholds on these values:

e For centroids nothing can be said at this level. The centehefsignal can be
everywhere inside the image profile, so that looking at thglsivalue there’s no
possible discrimination between wrong and right data;

e For the rms width we found a minimum of 5 and a maximum of 20 Isixthese
numbers comes from the reasonable and experimentallyagthfipothesis that the
beam uncorrelated spread in angles is always more than 6.2ss thatlmrad.

A threshold ofl.5mrad is therefore applied, meaning that profile width can not be
more than

1.5-1073(rad) - 300 - 1073 (m)
14.65 - 10=5(m/pizx)

this constraint is not very stringent (10 pixels more tham maximum expected
rms width), but at this level we want to exclude only the ddtat tare for sure
out of possible data range; the crossed control with cehtrad area values will
lead to the definitive choice. Situation of very big rms widémn happens if the
program fails to fit the profile (often because there is noaigmnd tries to fit the
background with a single Gaussian (in that case the rms w# sery big number);

= 30piz; (7

e For the area a minimum value is fixed; respect to the previass this happens
when, failing to fit the signal, the program considers a npesak as signal (fig(16));
sometimes the rms of the bump can fall inside the signal gomirange, but its
area will always be less than the reconstructed from reabsigrhe value chosen
as threshold is 2000 A.U.; it corresponds, considering thremum signal width
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Figure 16: Example of noise peak fitting; red line is the raofipe, the small blue Gaus-
sian is the program fit, and the green line is the "signal’rdfie cleaning.

possible of 5 pixels, to approximately 200 A.U. as maximugmal height, a value
below the expected noise level (300 A.U.).

The algorithm puts te-1000 (number used as tag, since nothing can be negative) all
the values found to be beyond one of these thresholds, ®getth the other parameters
relative to the same image. The area threshold seems tog ss#he minimum signal
area that one has is abaifi00, but in this first phase the goal is only to exclude values
that are completely out of range; later other controls, aghkentroid consistency etc..,
will be used to finely choose between remaining data.

Next step is the single slit position cleaning (list poir@)a.This is a critical point
since it is the last step before the calculation of mean altkee last chance to identify
iImages with systematic errors before they affect the meareveaaving a that point the
only solution to throw the entire slit measurement. What cardbne is use statistical
variables such as profile barycenter and rms width to isdlaepoints that have big
distances from the rest of distribution. The best thing tondihis case is cut the tails of
the distribution symmetrically, going always in the diieatof "most probable value}
this procedure should cut at worst some good measuresheting mean value untouched
( because statistical errors are symmetrically distrithudend cutting on both side doesn’t
change the mean), while in best case it cuts only the wrorgy dsfter some tests with
the subroutine, a cut value of5 times the distribution rms value has been chosen as the
best threshold for our application. Every value outtdf5 rms respect to the distribution
centroid will be excluded at this point. The subroutine vg#t the separately on the
centroid, area and rms distribution, synchronizing thetmatend: it is sufficient one of
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three values out of range to tag the specific measured imagi#épas wrong and force
the three values te- 1000. Test results are summarized in next points, for a measubke wi
15 images per slit:

e If all the images are good and the data distribution come fstetistical fluctua-
tions, normally froml to 4 images are trashed, depending on the amount of data
statistical fluctuations. As said before this action doeshange the mean, and
it has the only final consequence to increase the error bateiBranch B ( the
number of emittance values decreases);

e If only a fraction of data is incorrectl (— 5), the job is done, since the wrong data
are usually very far from right ones increasing the rms vencim On the other
hand there’s no big change in centroid position, leaving&ad¢ data close to it;

e If only a fraction of data is correctl(— 5), it depends on how the incorrect data
is placed around the correct set; if the distribution is syetrio and the center is
close to good data, then the subroutine will succeed, oikeravsubset of data will
pass this step, and the entire measurement will be throwreinegxt control (on the
mean parameters, list point n.4);

e If all the data are incorrect, then some of them probably suilivive, especially if
there is some kind of aggregation interval, where the dgw$ipoints is higher. A
mean value will come out from this dataset, but the consisteheck with other
slit values will exclude the value(list point n.4, or 6a/5b)

First two points are obviously the most frequent; the lastisrgenerally individuate
after a first data screening and the relative folder mantibshed; in the third case only
a manual hint to the program can solve the situation.

The forth step of the algorithm is the correction of mean &alu The data that
passed previous controls are then averaged in each siitgb@sition, and the standard
deviation is also calculated. Before trying to compare d#ife slits parameters to check
the data consistency, some other control is needed. Thdasthdeviation of the mean
is an indicator of the dataset scattering. The transveraenljgojection can reach at
maximumlcm total length, about.7mm rms width in both planes. Moreover, looking
to the reconstructed trace planes, maximum total diveryemeasured is aboGinrad.
Knowing the number of beam samples, both the maximum disthetwveen centroids
in space and angles can be extrapolated. We usually cut tine beam in 13 positions,
so the difference in mean divergence between 2 conseclitiseconsidering the limit
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situation of a divergent beam withnrad spread in angles, is aboutmrad This lead to
a max. centroid difference of:

( 10000(pm) =~ GGpix (8)

13 + 400(mm) - O.5(mmd)> :

1
14.65(um)
in case during the measurement the maximum possible des{@bemnm) between the
screen and the slit plane is used. Guessing a Gaussiardiigtn of points around the
right value, and dividing that number 6 times3c), one gets a standard deviation of
11 pixels; on the other hand if points would be randomly dhsted inside the window,
the standard deviation should B&/+/12 ~ 19. The choice is on the middle of the two
numbers, considering too strong the constraint of pegf@gussian distribution, but at
the same time considering a uniformly distributed dataseetnoise (although it is only
in a relatively small region of the window, a real signal wathandomly jumping centroid
inside a66 pixels region is to be considered as noise). The used thce&trocentroid
standard deviation i85 pixels. Same thing is done on the divergence standard d&vjat
directly linked to the rms profile width. In this case the stard deviation used is equal to
the maximum value possible, i.émrad. Another control can be done on the minimum
average area possible: with an rms value of 5 and an heidittopfin the worst case of
a signal comparable with a single Gaussian truncateelté sigma, one finds (from the
tests showed in section (2.4)) an area equal to approxiynéed. A lower limit value of
6000 is then chosen. This last control could be done also beforth@single image.

We prefer to do it at this point because a threshold on theageeirea seems to be
more adequate, not affected by fluctuations. When applyingesstrong constraint on
single image one run the risk to make the distribution no nsgremetric, throwing only
one side (that of smaller values) of it and changing theixgahean.

Last consistency control, is the centroid comparison, eslprnticipated in point
6a and 5b. A check between calculated parameters in diffpaesitions is carried on. It
is an important to exclude situations deriving from last paints in the above list; these
pathological situations in fact can lead to a non negligibtzease of emittance, if left
uncorrected.

Nothing can be said priori on the area distribution along the beam, since almost every
charge-position correlation is possible during beam diaiygas seen before, also angles-
position correlation can change from butterfly-like to baandike correlation along the
beam evolution. It is very difficult to extrapolate the difece between their measured
distribution and the expected one, since there’s no a regeeed distribution”.

The situation changes for the centroid distribution; delp@mon the position of the
slit plane respect to the beam waist, beam itself can be cgent divergent or at waist.
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In the ideal case of only linear forces acting on the beam artdate space bifurcations,
all the centroids should be on a line, whose angular coefficlepends on the particular
above mentioned situation. The choice done here is to tniesténtral centroid positions,
since the bigger signal height minimizes the analysis fajland fit them, finding the
"centroid line”. Comparing the remaining centroids data(tbf lateral positions) with
the theoretical values from the fitted line, a vector of défeces is produced. Now a
maximum value for these differences has to be decided.

The deviation from linear behavior comes from both non lindyamics or X
shaped trace spaces. In the first case, charge, transverkengitudinal density, energy,
RF injection phase, solenoid current, play an important sol¢hat it is very difficult to
theoretically predict what should be the maximum ratio lestw non linear and linear
forces, situation complicated by the fact that any of thecgel parameters has a big
range of used values. It is easier to have a look to the tramsespdrawn and extrapolate
the value from data. A value of 15 pixels maximum deviatioa baen found.

For the second case of X shaped trace spaces we can exteapoifalue from the
Monte Carlo test showed in sec.(2.4)). The worst case is thahich one has a double
Gaussian profile where the two functions have each the mamwirms and area possible
and the maximum distance between them. So, referring to(éyrtaking the2 function
heightsa, anda, as equal, the distance between thiggn— ¢,| equal to3o,, and the2
Gaussian rms widths, = 20pixels ando, = 10pizels, it comes out that the area of
the principal gaussiarp) is approximately the double of the othe)).( In this case the
resulting total centroid (calculated as the weighted mdandividual centroids) has a
distance from,, equal toj of the distance between the two functions (it comes out form
the area balance, i.e. if the 2 areas would be equal the aesgkntroid would be in the
center), i.e20 pixels:

Cs = Cp+ 30y;
3
At:Ap+AS — §Ap:2A57
c —i(ZA T+ Y Agr) = gc 15—
tot—At : il - SV - 37’ 3_
3 3
o = Cpggp:cijap:c;ﬁ—QO.

Being this number bigger than the other (15 pixels found legfare choose this
value as threshold. Every centroid out of ideal line for miban20 pixels is then forced
back on the line, meaning that reconstructed value was waowigthat, most probably,
we are in one of the two last situations described beforehitndase neither the area and
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Figure 17: : data footprints; On the X axis the slit numberilevbn the Y axis the image
number per slit position; as usual, the slit position aldmg lbeam aré 3, while in this
particular casé( images per position were taken. Blue squares are thrown snadpie
the others are the remaining images; here the centroidriabip reported; the slightly
different colors indicate the different centroid valudsttin this case raise from right to
left. The right picture indicates same dataset of the leftupe, but after the shuffling
procedure.

the rms can be trusted, so that their value is forced to

Now data are ready to be used to calculate the beam momentsn drataflow
branch A emittance, alpha and beta parameters are recctestftom mean values, using
the formula derived in [2], that make use of only these 3 medde quantities, plus
other mechanical dimensions, such as slit width or slit@lacreen distance etc, for the
calculus. To let the branch B reach the end another step haes ¢éxplained: the Data
selection. At the end of the control procedure, differergifpon have different numbers
of survived images; while this is not a problem for the braAdigorithm that calculates
the mean and doesn’t care about the population, it is crémighe other one, that uses
any single value to calculate the emittance.

To better understand in fig(17) we reported the output ofdbg&rint. msubroutine.

The right picture shows the same dataset of the left one ftertthe shuffling. All
the data have been reordered changing the relative linesidlying as much as possible
the squares towards the top of the matrix, such as the fisshlxs the maximum number
of positions with data. From each of these lines an emittaalee can be calculated, but a
decision has to be taken whether to use or not a line. Diftdiess in fact have different
numbers of good data, implying fluctuations in beam trars/elimensions. But are
they real or just consequences of the smaller percent ofitlgosuccess with smaller
SNR? A precise answer to this question is not possible, buthibe&e should be done
looking at the shuffled footprint: until the good squaresalteonsecutive, data should
be considered as good ( in the particular case showed in jig{h#l line number 7, i.e.

the first7 images, leading t@ emittance values) , because a beam transverse dimension

fluctuation is possible and has to be considered. Moreovee ibeam wouldn't fluctuate,
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there is no reason to think that the algorithm would behafferdntly. The choice is taken
once chosen the value of the variable "level”, asked at tlbgnam begin, and having 1
as default value. This variable can go frano 4 and it works as follows: once data
is shuffled, number of good data per line is calculated. I€ke® then only the lines
with the maximum number of images is taken into account tdtamgse calculation (the
first 2 lines in the above case); if level=1 also the next group @&djrthat with the higher
number of good images but the previous ones (3rd, 4th andheth)| are used to calculate
an emittance value (so emittance values from the Jitstes will be calculated), and so
on for levek 2, 3, 4.
Thefootprint. msubroutine makes use of a very useful way to represent dataue an
eventual wrong value is immediately shown by its differesibc

After data has been selected, next subroutine calculagesrtfittance in the same
way of the other branch, but this time it is repeated as munkdias number of lines
chosen by data selection. Only after this step, the meariaeoé, alpha and beta values
are calculated. Error bars come from the type A statisticaluation definition of mea-
surement. The error bars represent the uncertaintiesedielly a statistical treatment of
the data. First the mean and standard deviation of the dyantihe emittance, alpha or
beta in our case) is calculated:

1 N
1=y 2 9)

K=1

N
s(qr) = J Z @ — §)° (10)

K 1
where N is the number ahdependenimeasurements. The standard deviation cal-
culated, doesn’'t depend on the number of measurements, Isawing10 or 1000 mea-
surements distributed on the same curve doesn’t changtaitdasd deviation. On the
other hand is intuitive to understand that more measuresieadl to more confidence on
the mean value calculated. This is contained inside the ioreed Type Auncertainty
definition, that decreases as number of measurements sesrea

_ S (Qk)
N
It represents the uncertainty on the measured mean vakreNaihdependent mea-
surements, and will be the length of the error bars on ent&gnaph.
If one wants to know how big is the interval in which measurargected values
can fall, first of all it has to fix the fraction of probabilityalues distribution to encompass
(68,90, 95,99%, etc..). Then using as value distribution the Student'gibigtion with a

(11)
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Annex G2 Degrees of Freedom and levels of confidence - Expression of Uncertainty: 1993 (E)

Table G.2 - Value of 1w} from the i-distribution for degrees of freedom v that defines an interval
“Biv) 10 + 1w} that cncompasses the fraction p of ihe distribution

Degrees of Fraction » in percent
freadom
v 68, 27 50 95 95, 450 99 99 73
1 |84 6.31 12,71 13,97 63,66 735,30
2 1,32 2,92 4,30 4,53 292 19,21
3 1,20 233 3,18 131 5,84 912
4 1,14 213 2.8 2.87 4,50 6.62
5 LIt 2,02 2,57 2,65 403 5,51
6 1,00 1.94 2,45 252 3,91 4,50
7 1,08 1,89 2,36 2,43 3,50 4,53
2 1,07 1,86 2,31 2,37 3.36 428
9 1.06 1.83 2.2 232 325 4,09
10 1,08 1.81 2.1 2,28 317 1,95
11 1.0s 1.90 2,20 2,25 3.0 185
12 1,04 1,78 2,18 2,23 3,05 1,76
13 104 177 2,16 2.21 3,01 169
14 1,04 1,796 2,14 2,30 198 1,64
15 1,03 1,75 2,13 2,18 195 159
16 103 1,75 2,12 2,17 292 3,54
17 1,03 1,74 2,11 %16 2,50 151
13 1,03 1,73 2,10 2,15 288 | 348
19 103 1,73 2,09 2,14 286 3,45
0 1,03 1,m2 2,00 213 1,85 342
5 | 0z iLn 2,08 3 | 2,79 1,33
EY 1,00 1700 | oz .00 275 127
a5 1,01 1,70 2,03 .07 2.7E 313
40 101 1,68 202 2.06 2,70 1,20
45 1,01 1.68 201 206 2,69 11E
50 1,01 1.58 2,01 2,05 2,68 116
100 1,005 1,660 1,984 2,015 2,636 3,077
o 1,000 1643 1,960 2,000 2,576 3,000

Far & quantity z deseribed by a normal dissribution with expectation u and siandard deviation o, the
mierval g2, = ke encompasses p = 68, 27, 05 45, and 99,73 percent of (he distribution for & < 1, 2, and
3, respectively.

Figure 18: table of expanded uncertainty. The number fotom this table once decided
the fraction of distribution of values to encompass andutated the number of degrees
of freedom, has to be multiplied for the uncertainty to find #iosolute value.
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number of degree of freedom equal to the number of indepémdeasurements (calcu-
lated emittance values), the expanded uncertainty canlbelaged from the table shown
if Fig.(18) ([1]). The number found has to be multiplied fbetuncertainty:

Up=kp-u(y) —y£Up,; (22)

WhereK,, is the value found in the table(y) is the measurand uncertaingyis the
measured value, arid, is the resulting expanded uncertainty.

The program outputs are, besides already mentioned indide®dor future trace
space reconstruction and footprint images, HmitData.txtfile, where the emittance,
alpha and beta values from both procedures are saved togathéhe emittance uncer-
tainty and the reconstructed entire beam rms.
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4 Plotting the Trace space

4.1 Trace spacereconstruction

More than first and second order moments can be extrapolatextiie slit measurement
method. In particular, the entire distribution in space andles can be reconstructed
from the sampling. Obviously the smaller spatial and angd&itiution variation one can
reconstruct depends on the sampling rate. It is not crifmals since one is interested
above all on the trace space distribution envelope. We &jlgicnake use ofl 3 position
along6 beam sigmaj around the barycenter), one sample evefy;

Once the trace space is reconstructed one can basicallylatal@any order of mo-
ments, not only the first and the second, having a completegaadititative feeling on
what is the beam quality in that plane. In timeteranalysis.mandEmittance.nroutines
we already put the basis for the trace space drawing, chgpdisintype of profile to save
and the level of correction to use for profile exclusion byesghg the indexes to save
(FindBadProfiles.m From the first choice depends the profile portion used frdicon-
struction: one can use raw profiles with or without baselitréq second option is better
because it increase the final plot dynamics), profiles aitgras detection ASD prof), in
which all out of5 sigma around the centroid is thrown, or cleaned profitésafedProj
with only the final profile portion used for parameter caltiolaremaining.

PhaseSpaceScanMain.m

PhaseSpaceFunc

Non interp.
PhaseSpace.txt
PSaxes.txt

saveascii PhaseSpaceReconFunc

Figure 19: Trace space reconstruction dataflow.

From the second choice depends the number of profiles useadwotde plot: as
explained in the previous chapter, indexes for profile esiolu can be saved after any
routine step (single image cleaning, single slit cleanmgan correction and centroid fit)
and now used to exclude or not images that don’t pass a partiwontrol.

The main program i®haseSpaceScanMain.m first asks for the scan directory
and for the type of data to use (profiles and indexes). Theallg the subroutin€®has-
eSpaceFunc.rthat works into the single measurement folder inside the sii@ctory;
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Figure 20: example of divergence-profile pixel associatiém this case the reference
line is the same for the slit centroid and for the profile mx¢hey can also be different,
since the only quantity with physical meaning is the relatifference between different
positions. Once the two reference lines are chosen, theytbaemain the same until the
end of the measurement.

it gets the data from already saved files assigning them tabhlas, and scan thafo.txt
file to read the specific calibration constants (distance/den different slit positions and
distance between slit plane and imaging screen). All thecsedl profiles taken are then
averaged for each slit position, resulting at the end in oatirhaving13 columns filled
with mean profiles, and as much lines as profile length( or 640 depending on the
plane considered). Then it calls the sub-subroutihaseSpaceReconFunciime core of
reconstruction procedure.

For every position one can assign to each profile pixel a 8pelivergence value.
The first thing to do is fix one reference line for the slit piasitand another for the image
pixels. This choice is completely arbitrary, and it will @t only the final trace space
center, but neither its shape nor its moments. In fig.(20)strae reference is chosen,
but only to simplify the picture. In the algorithm the slit gtion values are centered
respect to the mean position value, i.e. a mean value islagcliand then subtracted to
each single position. This is possible since the numberegssbetween each position
is decided and saved by the control software after acquisitand these numbers are
readable from fileififo.tx) in any moment without the need to analyze the data. The
same can not be said for the images; the centroid of the drgamlet distribution will be
extrapolated only after the dataset has been analyzed: sieavant a phase space plot
which is independent from the emittance analysis (to sthdyconvergence of different
methods, and using one to understand the limits of the gthwerdon’t want to use the
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other procedure results. So the starting beamlet refeltereeill be the pixel0 ( nothing
will be subtracted). Starting from the mean profile matrimpther matrix of the same
size is created, whose elements will be the divergence ia$sdo the relative element of
the profile matrix. For the j-th profile (which means the j-thtnx column or the j-th slit
position), the relative divergence vector will be:
o ([Xi]y - pizCal) — Xteo;

[z;] = I )
wherepixCalis the pixel calibration, i.e. the device imaging system nitcption, L is
the distance between slit plane and imaging screenXaad; is the projection of the j-th
slit center on the imaging screen (a beamlet with zero meargknce should have the
centroid coincident with it). At this point the new matrixeehents have the dimensions
of radians; maximum and minimum matrix valuesiiDivandmaxDiy) are saved at this
point for future applications. Now to make a trace space @hat needs to convert these
numbers in indexes; in other words, we already know the X exiges, that are given
by the slit positions, but we need the profile positions altreyY axis. The matrix of
divergences has to become the matrix of ordinate indexe$) 8D one has to divide the
divergence matrix elements for the minimum visible divexggestep, given by the image
calibration and by the screen-slit distance:

(13)

/ pixCal
min — I

The new matrix will have only integer numbers, but the adnjtichoice of reference
lines can lead to negative numbers, so that it is necessagyddo it its minimum value
(+1), making the elements become positive numbers, able toabenarix indexes.

A new matrix is now created, having a number of lines equah&rax element
value of indexes matrix, and more columns, to leave blank space from the plot and
signal begin and end. This new matrix is initialized to zenod then filled with profiles
in the respective columns, each profile element having astidex the respective value
in the indexes matrix. Last but not least, a vector of reakdimates values has to be
created. For theX axis, at this level the distance between consecutive pixélse
equal to the relative slit position distances, while theozsill be the calculated as the
center of positions. For thE axis, the pixel width will be equal to the- calculated
before. The entire divergence interval is then calculaa&ahty the difference between the
maximum and the minimum values in divergence matnmnDiv andmaxDi\); this two
number aren’t symmetric respect to zero, their absoluteevdépending on the reference
line. The arbitrary choice done here is to make the interyairsetric, i.e. make equals
the minDiv and maxDiv absolute values. Both the phase space matrix and coordinates

X

(14)
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vector are then saved in tligaboratedDatafolder in two different files PhaseSpace.txt
PSaxes.tjt

Figure 21: Reconstructed trace spaces in different positioom the up-left: convergent
beam, beam at waist, divergent beam, divergent beam. Thgesrae reconstructed also
with different profile types, so that different levels of seiare visible around the beam.
A difference in image centroid is clearly visible.

4.2 Trace spaceinterpolation

The reconstructed trace space has a good resolution in Y laxis poor X resolution
that leads to images hardly usable ftmy”eye speculatidn Because of this difference
between the two planes (see fig.(21)), a two dimensionalgatation is not suitable to
improve image appearance since it increases the both thberushlines and columns,
adding useless data. Moreover the interpolation is alwaysed on along straight lines
and columns; in our case the output image will be distortadesthere is a correlation
between planes. while in this case the interpolation shbeldone along the trace space
axis (thinking to the signal as an ellipse);

The built-in MATLAB interpolation function creates fictitus undulations and an
unreal signal lengthening with isolated islands of sigrigl.(23)). It derives from the
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Figure 22: Difference from 2D MATLAB linear interpolatioreft) and the manual ”
home made” interpolation (right) used in the program.

information about signal correlation, not used in such pdate. A manual interpolation
procedure is implemented tacking into account this caticaia it is a 1D interpolation
along X axis (since we need to improve signal quality onlynglthat axis), applied on
profiles aligned about their maximum value. Some small palgrs has to be adjusted,
as that of controlling the interpolation between one profilth signal and the another
with only noise (typically this happens in lateral slitdf)at crates unreal signal wakes
since the maximum value of a noisy profile can be everywhergs iB implemented
applying another threshold: the Y distance between two mami values of the two
central profiles is calculated-@pComp), and every other distancé&/¢p;) is compared
with this number. If a specific difference is bigger thatimes the measured value, than
the interpolation between the relative profiles is donenatig them with the same gap of
the central slits@Gap; = GapComp), i.e. forcing back the profile maximum on the ellipse
axis.The choice multiplyt times the found value comes from experimental evidenaes, i.
the tails often deviates from the central centroid line, #nsd choice as been found to
be a good compromise, since also wrong profiles that couldnfsitie this range don'’t
affect too much the interpolation, and the consequent arslynterpolated coordinates
are obtained from the previous one just inserting betwieealues a third one equal to
their mean. The interpolation is repeatetimes (this number can be changed very easily
only changing thewumIter value) and results, starting from the non interpolatedetrac
spaces images showed before, are presented in fig.(23). tiff@sthe whole image is
centered respect to the maximum value making invisibleyesentroid fluctuation.

From these trace phases, a lot of beam characteristics aaxtrapolated, and also
beam parameters such as emittance, alpha and beta, carcllateal, comparing results
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Figure 23: same images of fig.(21) after the interpolation.

39



with the others obtained from the independent way desciibedction (2) and (3). Refer
to [3].
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