
ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di: LNF - INFN

SPARC/EBD-07/002
14 Giugno 2007

A robust algorithm
for beam emittance and trace space evolution reconstruction

Daniele Filippetto,
INFN, Laboratori Nazionali di Frascati (LNF)

Abstract

A robust algorithm for image analysis and emittance calculation from 1D pepper-
pot measurements is presented here. The need of a robust and consistent algorithm in-
creases when not only the beam parameters at a fixed point are measured, but the evolu-
tion of such parameters along the direction of beam propagation. In this case indeed, the
extracted values have to be compared one with each other and,since the parameter varia-
tions and oscillations can be very small, one has to make surethat these variations do not
come from different signal treatments, but they have a physical meaning. The program
is divided in3 main routines: the image analysis, the data cleaning, and the trace space
reconstruction. Each of these routines is described in details together with the choices
done at any single step. Some tests on the image analysis using analytical profiles are
also presented, to better understand the limitations of thealgorithm. Used thresholds are
physically explained, and an overview of the used procedureto reconstruct the trace space
from the data is given.
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1 Introduction to the method of measurement

The Emittance-meter is a novel diagnostic used to measure the transverse emittance along

2 meters in the cathode vicinity. The beam in this region is quasi-relativistic and the clas-

sic method such as quadrupole scan can not be used since for a fixed beam energy and

electron density internal collective forces (space charge) play a dominant rule in the beam

transport. The classic matrix formalism can’t be applied unless a matrix formalization for

the ”space charge kick” and a distributed model are introduced ([4]). The alternative way

is to build a system where the beam, starting from a fixed position, is no longer subject to

internal forces, decreasing its current as much as needed tomake beam evolution domi-

nated by initial temperature from that position on. The easiest way to make it is using a

collimator that stops all particles but that fitting trough it, decreasing its current. The exit

beamlet is no longer”space charge dominated”and, giving it the time to evolve over a

certain distance, one can observe light emitted from a scintillation screen hit by the beam.

If the collimator is a slit, it cuts the beam only along a specified axis (X or Y); moving

the slit in different positions along that axis, the beam is sampled. From the beamlet

image, a profile along the sampling direction is obtained, integrating the image over the

other axis. Analyzing the profile the beamlet initial (at theslit position) mean divergence

and the velocity dispersion along the sampling direction are deducted. By doing this for

different slit positions, and correlating position and divergence, the1D emittance can be

calculated, and phase space reconstructed. A novel device making use of this principle

has been built at SPARC photo-injector, in order to better understand, control and manip-

ulate electron beam created by the laser-cathode-gun system, and calculate the maximum

exit transverse brilliance.

Since the beam properties have a big range of possible values, a flexible device is

needed, in which all the measurement significant distances,such as the step between one

slit and the following or the distance between the slit and the screen, can be changed any

time. The single slit method is used, where a single slit moves along the beam transverse

dimension making several samples in different positions. The number of samples and

the relative distance are free parameters. Single slit method has the drawback to be a

multi-shot measure, opposite to the single-shot multi slitmethod, in which however the

flexibility is much less (the number of slit and their relative distances are fixed parameters

this time).

The measurement procedure consists on beam tracing along the measurement re-

gion via an envelope scan first, calculating the beam centroid and rms dimensions in a

variable number of points. In this first step the slit mask is extracted and images are taken

looking to the entire beam on the Yag:Ce screen via a1 : 1.5 imaging optics. Then an
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automatic emittance scan measurement starts, making use ofpreviously calculated pa-

rameters to center the slit and fix the slit step in different positions.

The slit method is well known in accelerator beam physics anddiagnostics, and lots

of references are available in literature. We refer to ref.[2] for details. In the following a

qualitative understanding of the method is given. Startingfrom the end, the RMS formula

for emittance calculation (see for example ref.[5])

εnx = βγ
√

〈x2〉 〈x′2〉 − 〈xx′〉2 (1)

whereβ andγ are the Einstein coefficients,x is the spatial coordinate, andx
′

is the deriva-

tive of x versusz, i.e. the angle of the velocity vector respect to the ideal trajectory (z).

The formula already gives us indications on what beam parameters need to be measured

(space, angles and energy)and what are problems with emittance measurements: overall

it is visible that emittance is calculated from the difference of two big numbers (order

of 10−6). This difference has to give results of the order of10−12, meaning that the two

quantities inside the square root need to be calculated veryprecisely.

While it is easy to extrapolate the beam position and dimensions at any place, even with

self forces acting on the beam, to calculate the divergence in one place one need two

measurement points. Independently from the quantities measured at each point (that can

be magnetic strength or beam dimension, depending on the particular measurement), the

hypothesis is that the beam evolves in between just under theinfluence of measured initial

quantity and, in case, some other externally applied forces. This hypothesis is no more

valid inside a ”quasi relativistic” dense beam, where also self forces play a rule. In this

case the evolution of the beam can’t be described without knowing also the initial beam

density and divergence, and without having a perfect model of intra-beam interactions.

In such a beam the single particle divergence is changing from time to time, under the

influence of self forces: this is definitely the cause of quad scan like measurements failure

in SP dominated beams (ref.[6]). The position-angle correlation also is changing rapidly

in a way not only dependent from initial conditions.

A MATLAB based software has been developed for image manipulation and pa-

rameter extraction. A lot of work has been done in image filtering and data analysis, in

order to create a consistent and user-friendly program to calculate beam parameters from

raw data. In following sections the main parts of the programwill be explained separately,

and the choices made to analyze data presented.

In fig.(1) is showed the entire program dataflow. I consists in4 principal routine

(the first four rows of dataflow in picture), followed by otheradditional routine for trace

space movie and visualization (last two lines). These latter routines do not participate to

the data analysis and emittance calculations.
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Figure 1: The analysis software data flow. To each line corresponds a separate routine;

In the central column of the picture the routine names are written; the input pa-

rameter of each routine are summarized on the left column, while the right part show the

specific routine output. As can be seen from the picture, except for the first routine, all

the others have input parameters depending from the previous, so that there is a precise

order that has to be followed, to run the program. It is the order that goes from up to

the bottom of the picture. The first routine takes as input therow images, and it gives

as output.txt files with parameters obtained from image analysis. This routine contains

indeed the algorithm developed to find and denoise the signal, calculating the needed val-

ues. It takes time (about 40 minutes) to analyze an entire emittance scan (30 different

emittance measurements, with13 slit position per measure and about30 images per slit

position, leading to about11700 images), while the others are much faster (less than a

minute). This is the main reason that lead us to divide different logical routines in four

parts, giving the possibility to run them independently.

The second routine takes as input the files saved by the first one and calculates the

emittance in two different ways that will be explained exhaustively in section 3.

The third routine reconstruct and save in a.txt file the trace spaces for each single emit-

tance measurement, while the fourth interpolates these spaces to obtain more sampling
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along the abscissa, and than calculates the emittance from the trace space, with the de-

sired cut in charge (by default the 95% of the beam charge is used).
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2 Single image analysis

Data filtering is probably the most delicate step in all the entire measurement process, the

art to manipulate data stored and extrapolate from it the wanted parameters value clev-

erly distinguishing noise from signal, deciding what is useless and what fundamental. In

our case, the data taken are beamlet images, and we would liketo develop an automatic

procedure (given the amount of data stored) to analyze them,choosing MATLAB as pro-

gramming environment. The parameters to be extrapolated from image are: beamlet area

(proportional to the number of particle passed trough to theslit), its centroid, and the

rms width along the direction perpendicular to slit edges. Aprofile along that direction

is indeed extracted form the image integration along the other axis. This profile is then

manipulated to calculate the needed parameters. Furthermore, the knowledge of the slit

center, the slit width, and the distance between sampling and imaging plane, permits the

rms emittance calculation. Obviously to know the normalized emittance also the energy

has to be measured. The formulas that we use to calculate profile centroid ad rms are the

weighted means:

A =
nj
∑

i=1

ai; (2)

x̄ =
1

A

nj
∑

i=1

aixi; (3)

〈

x2
〉

=
1

A

N
∑

i=1

ai (xi − x̄)2 =
1

N

N
∑

i=1

aix
2
i − x̄2; (4)

Whereai is the profile value (y value in the example profile of fig.(2)) at i-th position,

corresponding to the integrated i-th image line (or column), andxi is the corresponding

abscissa value (x axis in the example profile of fig.(2)).

A systematic study of images acquired has been done fixing theranges of variability

of parameters to be extrapolated and other important quantities:

• A baseline on the profile is always present, whose value depend on the camera gain,

but for our typical measurement is always around104 ;

• Noise level peak to peak is around300 A.U.(depending from gain), randomly dis-

tributed on the baseline;

• The signal peak varies from800 to 8000 A.U., depending from gain, but mainly

from which part of the beam is sampled;

• The profile rms width is strongly related to the beamlet divergence at the slit plane.

It is proportional to the uncorrelated spread in angles or, roughly speaking, to
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the transverse trace space thickness at one fixedx value. Studying the different

trace space reconstructed (the reconstruction method willbe explained in section

4) from measurements, and looking to some selected”extreme” trace space plots,

we found this spread to be between0.2 and1mrad. If one consider the distance

between slit and imaging plane equal to400mm, and the virtual dimensions of the

camera pixel (physical dimension times the optics magnification), the expected rms

width range goes from5 to 20 pixels.

• The signal centroid can be everywhere inside the profile.

Figure 2: example of data; beamlet image and its profile.

For a particular measurement all the mentioned values have correlations, so that it

is not obvious to associate for instance the smallest profilewidth with the highest profile

height. If one has for example abutterfly-liketransverse trace space, there is an inverse

correlation between height and rms, i.e. the bigger the latter the smaller the former (see

for example fig.(14). On the other end the correlations change for different measurements,

and considering the entire data set, every combination is possible.

2.1 Signal detection

Once the profile is created from image integrating it along the direction normal to the slit

motion, the first logical step (signalDetect.m) is to select a region of interest containing all

the signal, and extract it. At this point we’re not interested in finding exact output values

for the signal, so that, even though signal shape changes completely between different

measurements, the signal is fitted with a Gaussian-plus-baseline function:

f (x) = a · e
(x−c)2

2s2 + h. (5)
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Figure 3: Analysis program dataflow; the names inside blue boxes are the code function
names. Red dashed points are positions were the different variables are extracted and can
be saved.

Initial fit parameters are calculated using as function height (a) the maximum of

the smoothed profile (moving average with ”10 pixel average”) and as temporary centroid

(c) its position; to calculate the initial baseline (h) and sigma (s), an initial window cor-

responding to a width that would have a signal with4mrad angles spread (4 times the

maximum value possible for our typical beam) centered around the maximum is taken,

and the baseline is calculated averaging all the pixel out ofwindow, while the initial rms

width will be that of the signal inside the window. At the end the centroid is recalculated

as the ROI-signal (RegionOfInterest) center of mass. This last action turned out to

be very important, because, as we’ll see later in this section (see for example fig.(4), the

signal is not always symmetric respect to the maximum, and the center of mass can be

slightly different from it; this operation allows to centerthe final ROI respect to the whole

signal and not just to its peak. There’s noa priori reason to give more importance to the

stronger signal than to the weaker. From the fit one gets new rms, centroid, height and

baseline of the profile. The original signal is now manipulated, subtracting the baseline

and limiting the region of interest to±5 sigma around the centroid. The function outputs

are:

1. the original signal without baseline (variable name inside the program:ProfNoB-

sln);

2. the new region of interest containing all the signal with the baseline subtracted

(ASDprof , After Signal Detection profile);
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Figure 4: Example of region of interest selection for two different input signals; the green
curve is the raw signal, blue curve is the fitted curve, and magenta curve is the output
signal, after signal detection.

3. the baseline itself (baseline);

4. centroid (AsdCentroid) in pixel, area in A.U.(AsdArea), and rms width already con-

verted to radians (AsdSigmap).

2.2 Signal Cleaning

The following step is trying to precisely discriminate where the beam signal starts, sep-

arating it from the sea of noise. This is probably the most important chain mail of all

the procedure, since the output parameters will strongly depend on the choices done at

this point. The core of the routine (signalCleaning.m) is an iterative procedure that, start-

ing from the output signal of previous function, calculatesthe profile centroid and RMS

width, then shrinks the region of interest to±3 rms around the centroid, and recalculates

the same parameters again. Then it compares the new values with the old ones and keeps
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going until they match each other. This procedure makes use of two different facts:

• after the detection and the baseline subtraction, the remaining noise in the signal

vicinity fluctuates around zero, with positive and negativevalues; since the profile

values represent a weight in the rms formula, negative numbers tend to decrease

the rms value, so that until negative values are present in the signal, the window

continues to shrink.

• In the signal vicinity the signal mean starts to increase from zero, since signal tails

add to noise; moreover the baseline calculated with the fit inside the previous func-

tion is sometimes slightly underestimated (0.1 − 0.2%), because of the superimpo-

sition of the Gaussian tails.

Together these two points make the algorithm work. At the first iteration the function cal-

culates an rms value that leads to a smaller window than the actual one because of negative

values, but bigger than the right one (that of an ideal profilewith only signal, no noise and

baseline), because positive and negative values are not perfectly balanced (second point

in the above list); the second iteration does the same, but this time both the contributions

(the one that tends to decrease and the one that tends to increase) will be smaller, because

of less noise inside the window, and so on. At a certain point the beginning of the signal

under the noise will lead to a rising mean and the two ”forces”will come to a balance.

Typically the procedure converges after4−5 iterations to the equilibrium point. The local

mean of the signal acts as a friction, a ”force against movement”, where movement means

the tendency to erode the signal, and its rising toward the signal makes the force strength

directly proportional to the distance from equilibrium. Obviously a percent of the signal

will be lost before reaching the balance. For a given level ofnoise, the absolute area of

signal lost is more or less the same for every kind of signal, but the percent respect to

the whole signal area depend on the signal-to-noise ratio (this point will be demonstrated

with tests later in this section). The outputs are:

1. the cleaned profile, i.e. the portion of the profile that theprogram has recognized as

signal(CleanedProf);

2. same as above but with baseline added (CleanedProfbsln);

Lots of tests with different signal shapes and SNR have been done to validate this algo-

rithm and will be summarized at the end of this section.
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Figure 5: examples of different signals cleaning: red curveis the original signal, blue
curve is the gauss fit to detect the signal, and green curve is the signal after cleaning. In
the signal region the red curve is not visible because it is superimposed to the green one.

2.3 Results calculation and saving

The last step is to calculate the values for needed parameters (SingleProfRmsCalc.m).

This is done using the same formulas as above(eqn.(2)(3)(4)), applied to the cleaned pro-

file. The output of this step is a vector (finalData) with the values needed. After all, data

are saved inside a folder (”ElaboratedData”) automatically generated by the program at

the same level of the data folder, also reproducing the same data sub-folder tree. The

output vector is then saved in the homonym elaboration folder of that from where images

were loaded. The file that contains the elaborated data has the same name of the images

folder (for examplefend01.txt). Since this program has the possibility to reconstruct the

phase space, one needs to save also the profiles (prof01.txt). Any of the above indicated

profiles can be saved, but by default the raw profiles without baseline are chosen.

2.4 Tests on the image analysis routine

As said before, a big number of tests have been done on the algorithm to validate it. In

the following we want to show the results of these tests: a setof profile vectors reproduc-

ing all the possible data profile has been created (with and without random noise), and

given as input to the program; the comparison between the real profile values and those

reconstructed by the program after the detection and cleaning procedures will be shown.

Looking at the data, one observes that all the possible beamlets distributions lead to

2 different type of profiles:

• signals symmetric respect to their maximum; this kind of data can be well repre-

sented as a truncated (or not) Gaussian;

• signal not symmetric respect to their maximum; in this case2 Gaussian functions
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are needed to represent it. The second Gaussian typically should look like a small

bump on the main signal tail but, depending on the situation (for example in the

solenoid scans), can be also at the same level or bigger than the first one. Tests

varying the height and the distance between the two signals have been carried on.

Obviously also the width of the second gaussian will vary, but the results are not

reported, since the algorithm is not sensible to this parameter.

It is mandatory to start the algorithm test with a single Gaussian without noise, just to see

what appends with an ideal profile. A Gaussian profile with different sigma and heights

is used as program input, and results are summarized on the fig.(6).

Figure 6: the upper figure shows a particular input test profile (height=5000A.U., σ =
8pix) in red, superimposed to a black dotted curve, the processedprofile. The lower
graph summarizes the test results for different gaussianσ and heights. The numbers don’t
change with height because there’s no change in SNR (the noise is zero).

The upper picture of fig.(6) shows a particular input test profile in red (height=5000A.U.,

σ = 8pix, no noise added), superimposed to a black dotted curve, the processed profile.

The lower graph summarizes the test results: on thex axis the height of the gaussian is

reported, while they axis represents the ratio of the areas (red markers) and rms widths

(black markers) between starting (real) and processed profile. Different marker shapes
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represent differentσ of input gaussian, from2 to 8 pixels. The reconstructed areas are

almost independent from Gaussian parameters (the ratio tends to 1 increasing the rms of

the initial signal, but it is always around99.6%). In the case of rms widths the difference

is slightly bigger, but always not relevant (not less than97.5%) . The numbers don’t

change with height because there’s no change in SNR (the noise is zero) In this case the

difference between the real numbers and the reconstructed ones, is due to the fact that the

program cuts the profile, identifying only the values inside±3 sigma around the centroid

as signal. Obviously this choice is not the best for this ideal case (the rms calculated

will be the sigma of99% of signal), but it was found to be the optimum when the noise

is added. After this point in fact the SNR become too small, and the rms calculated is

affected overall from noise; moreover the value becomes very sensible to the last-point

choice. The second test was done with a 3 sigma truncated Gaussian, adding a baseline

but no noise, trying to see some difference from the above case. Results are summarized

in fig.(7).

Figure 7: Results of the tests with a truncated Gaussian. In this case the ratio is very close
to one.

This test has been done because the image profile to analyze won’t have infinitely

long tails but it’ll drop off to zero (as every real signal does). Results are better than with

the entire function both for area and rms width, but the latter profits more from the cut. It

can be understood thinking that the same cut in area will produce different effects on the

rms, depending on the distance between the signal mean and the cut-zone barycenter; in
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our case tails carry a very small fraction of area, having however a non negligible weight

in rms calculation.

It is worth to note that (as seen in the previous test with ideal gaussian without noise)

the program works also for ideal profiles, although the mechanism that makes it work is

different from that described before for the case of noisy signal: once the first region is

selected from the fit, the program calculates the rms value and shrinks the window to 3

rms, wasting the0.4% of the beam. At this point one has a truncated Gaussian, and the

rms will be in the worst case98% of the previous one (as can be seen from the fig.(6)). If

theσ is such that the percent left is equal or more than 1/3 pixel (3σ ≥ 1) the window will

shrink again about that quantity, but this time the situation will be that of the fig.(7): in the

worst case the new rms calculated will be 99% of the previous,and the algorithm will stop

unlessσ < 34 (1% of sigma should be bigger than 3, from the same condition as before).

It is impossible in our case to have such a big value. This lastexample has been described

just to understand the procedure, but in reality the limits are much less tight, since going

up with the profile width, algorithm become more and more precise (see fig.(7)).

The next step is introduce noise and simulate a real input profile. First test were

done with a single Gaussian, (truncated or not), adding a constant baseline (10000 A.U.,

the typical extracted value), and a random noise (white noise, uniform distribution) with

a peak to peak values of300. The SNR was varied changing the signal area and height.

Moreover, for each profile a noise-dependency study has beendone, generating50 times

the noise vector added always at the same signal and processing the overall profile, to

understand the sensibility to spike position and to noise pattern in general. So from now

on every graph will have points (mean values) with error bars, calculated as standard

deviation of the mean divided for the square root of number of”measurements”(50).

With the single Gaussian test we would like to demonstrate the limits of applicability of

this algorithm, and also understand if there is a dependencyof the results from position

of beamlet in the image (the fit could work better in the central window zone than in the

lateral). Figure(9) shows the results obtained from singlegaussian tests. On the y axis is

shown the ratio between real parameters (that calculated before adding baseline and noise)

and the reconstructed ones, at the program exit. The first plot is the area ratio, that gives an

idea on the fraction of the beam left out from reconstruction. Obviously it decrease with

the increasing of SNR (defined from now on as ratio between Gaussian height and noise

level (300A.U. ), so directly proportional to thex axis), because of the decreasing of the

beam fraction hidden by the noise; the precision also raiseswith the signal width (different

curves). The same can be argued for the second graph that represents sigma ratio between

the real and the reconstructed rms. In this case the first points are less precise respect to

the same in the upper graph, since the hidden signal is alwayson the tails and, although
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Figure 8: different examples of input profiles used as test; the upper left and upper right
profiles are single Gaussian with different heights and sigma; moreover the second one
is truncated to±2.5σ. The lower right and left profiles make use of 2 Gaussian with
different centers and widths. In both cases the entire signal is truncated to±3σ. These
last2 profiles should reproduce real signals such as those of fig.(5).

the area fraction can be small, the tail contribution to the rms is relatively big. Also the

error bars tend to decrease going from left to right, meaningthat noise pattern sensitivity

decreases. In both plots90% precision is reached for the lower curve (sigma = 5), when

the profile height reaches approximately1500 A.U. ( black vertical line).

Figure 10 shows results obtained from input signals with different centroids. Since

the images are640X480 pixels, after the integration along one direction the resulting

profile will have a length equal to one of those two values (depending on the direction of

integration). In the case of fig.10 a test profile vector of 640elements has been created,

and the centroid profile moved first of all on the left (xmean = 100), then on the center

(xmean = 320) and on the right (xmean = 540). The plot shows that there is not

dependency from profile centroid position, since the algorithm outputs are the same for

different signal centroid positions. The plot shows only test done with a Gaussian with

σ = 5, being this the minimum width possible in our case (see 2 in 2)and therefore the

most problematic.

Another point that comes out from the fig.(9) is that, also forbig SNR, the recon-

structed width never reaches the real value (then last pointin the graph is0.985). This is
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Figure 9: Results obtained from a noisy test profile as programinput. Each curve has
different width, so that it clearly shows that the precisionof the reconstruction depends
both on SNR or signal width. Dividing the x axis (Gaussian maximum) for the noise level
(300A.U.) one obtains the SNR.

a due, as said before, to the infinite tails of the test function used. Next graph (fig.(11))

shows the same tests as above done with a truncated (to2.5σ) Gaussian, something closer

to the real image profile. The main differences are the start values (x = 500) closer to the

real one, and the ”asymptotic value”, equal to 1. The SNR value for which one has the

90% in the lower curve is always around1500, but this is probably due to the fact that the

difference between the two above cases tends to decrease as the profile intensity increases

(the tails weight in the rms decreases).

Last test was done with a double Gaussian:

f(x) = ap · e
(x−cp)2

2σ2
p + as · e

(x−cs)2

2σ2
s + h. (6)

The first gaussian was left constant toσp = 8pix andap = 3000A.U.. the choice of

these constant parameters has to be discussed: the double-Gaussian-like profile comes out

when the beam is represented by an X-shaped trace space. In this case the profiles from

central slits are unaffected, such as that from lateral-endslits, since the second branch is

usually shorter and less intense. The problem is visible only in the slits between the center

and the end, the middle-lefts and middle-rights, so that theprincipal signal has always an

intensity and a width of the order of the fixed one. The parameters of the second Gaussian
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Figure 10: there’s no dependency of final values from beamletcentroid position.

are varied according to the real data:

• Heightas between500 and5000;

• Sigmaσs between2 and8;

• Relative centroid distance|cp − cs| between1 and3 timesσp ;

In fig.(12) we summarize the test results for the maximum centroid relative dis-

tance (3σp), since this is the worst case for the analysis. The expectedproblem was the

possible width underestimate for small values of second Gaussian maximum, since its

area is small compared to the total signal, while its contribution to the second moment

of the distribution is not negligible because the relatively big distance from distribution

barycenter. The expectation was wrong, as can be seen from the graph of fig.(12), since

also for small values of second peak, the algorithm succeedsto reconstruct the parame-

ters, i.e. the ratio between the real and reconstructed parameters is always very close to

1. One probably needs to go even more down with values to see this kind of error. The

error bars slightly decrease with SNR, being always below2% and demonstrating a small

dependency from noise pattern. On the next graph (fig.(13)) the more critical points are

showed (those with minimum SNR) for different second-peak widths. This gives an idea

on what is the maximum expected deviation from real in these cases, and its dependency

from noise pattern.

Before the end of this chapter we want to give an idea on what arethe two limit

situations that can be encountered while analyzing data. Wetook two different sets of

data, with different trace space shapes.
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Figure 11: Test results with a truncated Gaussian; differences from the previous case are
the start ratio ( bigger in this case) and the asymptotic value, equal to 1.

Both the measurements were taken on November the 26-2006, in the same starting

conditions (same solenoid current and RF phase), but at different locations. The first

one was taken positioning the Emittance-meter at1230mm from the cathode, while the

second one was at1589mm away from it. Figure(14) is a sketch of the profile rms width

(the points have as error bar±3 times the profile rms width) as a function of the centroid

position. It is not a trace space plot, since the orientationis wrong, but the thickness

and the shape of the figure are directly proportional to thoseof the phase space plot (for

its precise drawing we refer to the section (4)). As can be seen, the plots have different

behaviors: in the first one the width increases moving away from the center, so that the

profile with smaller area will have bigger rms; in the second sketch the opposite situation

is observed, i.e. an inverse correlation between distance from centroid and width is found.

The physical explanation of the two different shape is out ofthe scope of this chap-

ter, but qualitatively it can be understood knowing that first measurement (upper plot

in fig.(14) was taken in the vicinity of the beam waist (after magnetic focalization by

a solenoid lens) and its butterfly shape is due to different longitudinal slice waist posi-

tions. It is a direct consequence of beam correlated energy spread coupled with the lens

chromatic aberrations. The second measurement (lower plotin fig.(14) was done at the

beginning of the after-lens drift region, where the entire beam is convergent.
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Figure 12: Results for the algorithm test with a double Gaussian. The SNR between the
second Gaussian and the noise has been varied, leaving the first one fixed. The results are
always in good agreement with real values .

Figure 13: The graph represents a portion of the above points, those with the minimum
SNR (x = 500).
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Figure 14: Two different beam behaviors, showing differentspace-divergence correlation.
The upper plot shows a”butterfly-like” shape, while the lower one shows a”banana-like”
shape.
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Figure 15: Dataflow of theemittance.mprogram.

3 Emittance extrapolation from data

Once the area, centroid and rms width have been extrapolatedfrom each single image,

covariance matrix of beam(x − x
′

) distribution can be calculated. For each slit position

in a measurement a certain number of images (variable from 10to 30) is acquired, leading

to the same number of values for each of the 3 parameters. All the reconstructed values for

a single parameter should be identical for a fixed slit numberand cathode distance, but in

reality both the system instability (fluctuation of parameters from assigned value) and the

(small) dependence of image analysis algorithm output fromnoise, lead to a shot to shot

values fluctuations. Moreover electric field discharges in the gun, beam-RF dephasing and

other temporary problems may lead to images without signal,or with signal properties not

consistent with the specific situation.

Before to start the routine explanation, it is worth to underline that the control room

measurement procedure is totally automatic, so that the operator has the only assignment

to fix the starting position and push the start button.For instance a complete emittance

scan for 30 different distances from cathode takes about 45 minutes; during this period

everything can appends, from discharges to laser stop, while the acquisition continues, and

only the operator problem-solving skill determines the quantity of blank or wrong data.

With this in mind it becomes obvious that, analyzing data, a robust cleaning procedure
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has to be implemented to reduce the effect of systematic errors.

TheEmittance.mroutine dataflow is showed in fig.(15).Taking as input the recon-

structed values fromemeteranalysis.m, the routine cleans the set of data from bad values,

and calculates the beam parameters with to different methods, one making use of aver-

aged slit parameters and the other that averages different emittances calculated using each

single parameter. In latter case also the error bars can be calculated.

All subroutine called during the execution are representedby blue boxes. Following

the timeline, the routine main tasks are:

1. Get data from files saved by the previous program, (GetData.m) ;

2. Single image cleaning; at this point any data vector of single image (area, cen-

troid and RMS) is individually analyzed. The algorithm applies some thresholds,

taking decisions of keep/discarding the specific image and the relative data vec-

tor(CleanData.m);

3. Single slit cleaning; every data vector relative to an image that overtakes the pre-

vious controls, is compared with the others belonging to thesame slit position.

Statistical quantities are used, such as mean and standard deviation of dataset. The

tails of the distribution are trashed in the effort to reducesystematic errors and with

the goal to leave only the most probable values, (CorrectSingleData.m);

4. Mean values cleaning; from the remaining values (dataset) a mean value per slit po-

sition is obtained, and looking to its standard deviations the quality of the specific

dataset can be extrapolated, deciding whether it can be trusted or not, (CorrectMe-

anData.m);

From now on the routine dataflow bifurcates in two branches; the one below (branch

A in fig.(15)) calculates the beam characteristics (ε, αandβ) from averaged parameters.

From every slit position acquisition comes out only one vector of 3 mean parameters (cal-

culated using values that survived to the controls described above), and only an emittance

value is reconstructed from the following steps:

5a. A new average from the remaining values is calculated forevery slit, and a mean

vector (area, width and centroid) is produced, (imageAveraging.m);

6a. Mean values correction; mean parameters from differentslits are now compared

to verify the consistency of the whole set of data, and correcting strange and im-

possible behaviors ( due for example to a system failure thatextends for a period
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comparable with a slit time measurement, 4-5 seconds). A linear fit of central slit

centroids is carried on and deviations of mean values from linear behavior analyzed

(RemoveLateralSlots.m);

7a. Emittance final calculation [2]; first and second order moments of both spatial and

angle distribution are calculated, including their cross-correlation. Distributions are

sampled by the slit positions, so that the moments are calculated as discrete sum of

weighted values (the weight is represented by beamlet area), (EmittanceCoreRou-

tine.m).

The dataflow branch B an alternative way of data treatment. Inthis case the averag-

ing is done at the end on the emittance value itself, i.e. the average is directly applied on

the final result. Suppose for example to analyze a measurement with 15 images per slit po-

sition, and suppose that only 10 of them survive to cleaning and correction procedure; for

every slit position one will have 10 areas, centroids and rmswidths. Instead of averaging

them and use their mean value to find the result, we randomly associate each single value

with others relative to different positions, and calculate10 different emittances. This can

be done since now each single value measured is supposed to beindependent from the

others; eventual systematic effects that correlate data have been corrected at this point,

and the remaining data fluctuations are the superimpositionof different independent sta-

tistical fluctuation sources. With this method indeed all the possible sources of error are

taken into account, from the instability of the whole apparatus to the reproducibility of

the analysis software outputs. All together these sources build up in the error bars.

The procedure is as follows:

5b. The first subroutine (RemoveLateralSlots.m) has already been described. The only

difference in this case is that while the fit is done on the meancentroids of cen-

tral slits as before, the comparison is done between the fitted line and each single

data, correcting in case the single data and not the mean value of the specific slit

acquisition;

6b. Creation of datasets for emittance calculation; in the hypothesis that all data from

successive shots are independent from each others, good data are reordered and ran-

domly associated to others to create complete datasets for emittance calculations,

(ShuffleData.m);

7b. Select the created datasets to use in following steps; ingeneral each slit position

will have different numbers of good data. In particular lateral positions often have
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less usable measurements; if one does not want to use fictitious beam size has to be

careful in this choice, (DataSelect.m);

8b. The same subroutine is used to calculate the emittance, (EmittanceCoreRoutine.m),

but this time it is repeated for the number of independent datasets created;

9b. Arithmetic mean and standard deviation of emittance, alpha and beta parameters are

calculated. Experimental standard deviation (uncertainty) is then found using the

type A evaluation (i.e. dividing for the square root of number of data the statistical

standard deviation, refer to ([1])).

In every kind of measurements there are2 error sources: systematic and statistical

errors . The task of the first four points described above, such as that of points6a and5b,

is the minimization of systematic errors, without affect statistical fluctuations. In the ideal

case in which this goal is perfectly reached, the two methodsshould give close results,

because statistical fluctuation does not affect the mean values. The differences in this

case mostly depend on selection of dataset to use in the branch B. Moreover there is a

theoretical difference: the mean of a function is equal to the function of the mean only for

linear functions, and that is obviously not the case for the emittance as function of second

order moments (see eq. (1) for rms emittance).

Before to go into details to justify choices done while tryingto identify and exclude

data affected by systematic error, a little explanation on the meaning of red dotted lines

and dotted boxes in dataflow (Fig.(15)) is necessary. Red dotted lines represent diagnostic

points in dataflow, where it is possible to save and plot information about excluded data

until that point for each single folder, understanding whatis the impact of every single

subroutine on the total amount of data. Being13 the number of slits positions, the total-

ity of data for a single measurement is represented by a matrix with 13 columns and as

much lines as the number of images collected for a single beamsampling. The subrou-

tine (footprint.m) saves pictures for centroid, rms width, and area matrixes,representing

as blue squares the excluded data, and as colored (128 colours) squares the good data

(see Fig.(17)). These pictures, besides the information about the number of remaining

images, give a qualitative information about the goodness of cleaning procedure: colours

gradients can help the operator in identifying eventual nonconsistent data survived to

controls. Moreover differences between before and after data shuffling can be understood

and number of measurement to use in the branch B (DataSelect) chosen by eye.

The dotted boxes are points in which indexes of survived profiles can be saved

in .txt file for future trace space reconstruction. Any of this pointgives to the user the

possibility of plotting (using another function later explained) the trace space, using only
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profiles that reach a particular dataflow point (FindBadProfiles.m). A comparison between

different trace spaces is possible in this way, helping to graphically understand which part

of beam is trashed, in case it is, deciding for example if it isbackground noise or real

signal. Violet words are the exact names of.txt files saved by the program. Dataflow

objects representing these two last subroutine are drawn indotted lines meaning that their

execution can be excluded anytime from dataflow without affecting the final result.

Let’s start with explanation of choices made to exclude systematic errors. First of

all it has to be pointed out that the value of every threshold and meaningful parameter is

asked at beginning by the program and can be changed anytime to study sensitivity to it.

Here we want to argue the chosen default value.

We start from the Single signal cleaning routine (point 2 in the list). As said many

times, from a single profile analysis 3 numbers are extracted: area, centroid and rms

width. The considerations done in section (2) about the expected values, help us to fix

some thresholds on these values:

• For centroids nothing can be said at this level. The center ofthe signal can be

everywhere inside the image profile, so that looking at the single value there’s no

possible discrimination between wrong and right data;

• For the rms width we found a minimum of 5 and a maximum of 20 pixels; these

numbers comes from the reasonable and experimentally verified hypothesis that the

beam uncorrelated spread in angles is always more than 0.2 and less that1mrad.

A threshold of1.5mrad is therefore applied, meaning that profile width can not be

more than

1.5 · 10−3(rad) · 300 · 10−3(m)

14.65 · 10−6(m/pix)
∼= 30pix; (7)

this constraint is not very stringent (10 pixels more than the maximum expected

rms width), but at this level we want to exclude only the data that are for sure

out of possible data range; the crossed control with centroid and area values will

lead to the definitive choice. Situation of very big rms widthcan happens if the

program fails to fit the profile (often because there is no signal), and tries to fit the

background with a single Gaussian (in that case the rms will be a very big number);

• For the area a minimum value is fixed; respect to the previous case this happens

when, failing to fit the signal, the program considers a noisepeak as signal (fig(16));

sometimes the rms of the bump can fall inside the signal good rms range, but its

area will always be less than the reconstructed from real signal. The value chosen

as threshold is 2000 A.U.; it corresponds, considering the minimum signal width
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Figure 16: Example of noise peak fitting; red line is the raw profile, the small blue Gaus-
sian is the program fit, and the green line is the ”signal” after the cleaning.

possible of 5 pixels, to approximately 200 A.U. as maximum signal height, a value

below the expected noise level (300 A.U.).

The algorithm puts to−1000 (number used as tag, since nothing can be negative) all

the values found to be beyond one of these thresholds, together with the other parameters

relative to the same image. The area threshold seems too small, as the minimum signal

area that one has is about6000, but in this first phase the goal is only to exclude values

that are completely out of range; later other controls, suchas centroid consistency etc..,

will be used to finely choose between remaining data.

Next step is the single slit position cleaning (list point n.3). This is a critical point

since it is the last step before the calculation of mean values, the last chance to identify

images with systematic errors before they affect the mean value leaving a that point the

only solution to throw the entire slit measurement. What can be done is use statistical

variables such as profile barycenter and rms width to isolatethe points that have big

distances from the rest of distribution. The best thing to doin this case is cut the tails of

the distribution symmetrically, going always in the direction of ”most probable value”;

this procedure should cut at worst some good measures, leaving the mean value untouched

( because statistical errors are symmetrically distributed, and cutting on both side doesn’t

change the mean), while in best case it cuts only the wrong data. After some tests with

the subroutine, a cut value of1.5 times the distribution rms value has been chosen as the

best threshold for our application. Every value out of±1.5 rms respect to the distribution

centroid will be excluded at this point. The subroutine works at the separately on the

centroid, area and rms distribution, synchronizing them atthe end: it is sufficient one of
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three values out of range to tag the specific measured image (profile) as wrong and force

the three values to−1000. Test results are summarized in next points, for a measure with

15 images per slit:

• If all the images are good and the data distribution come fromstatistical fluctua-

tions, normally from1 to 4 images are trashed, depending on the amount of data

statistical fluctuations. As said before this action doesn’t change the mean, and

it has the only final consequence to increase the error bars inthe Branch B ( the

number of emittance values decreases);

• If only a fraction of data is incorrect (1 − 5), the job is done, since the wrong data

are usually very far from right ones increasing the rms very much. On the other

hand there’s no big change in centroid position, leaving thereal data close to it;

• If only a fraction of data is correct (1 − 5), it depends on how the incorrect data

is placed around the correct set; if the distribution is symmetric and the center is

close to good data, then the subroutine will succeed, otherwise a subset of data will

pass this step, and the entire measurement will be thrown in the next control (on the

mean parameters, list point n.4);

• If all the data are incorrect, then some of them probably willsurvive, especially if

there is some kind of aggregation interval, where the density of points is higher. A

mean value will come out from this dataset, but the consistency check with other

slit values will exclude the value(list point n.4, or 6a/5b).

First two points are obviously the most frequent; the last one is generally individuate

after a first data screening and the relative folder manuallytrashed; in the third case only

a manual hint to the program can solve the situation.

The forth step of the algorithm is the correction of mean values. The data that

passed previous controls are then averaged in each single slit position, and the standard

deviation is also calculated. Before trying to compare different slits parameters to check

the data consistency, some other control is needed. The standard deviation of the mean

is an indicator of the dataset scattering. The transverse beam projection can reach at

maximum1cm total length, about1.7mm rms width in both planes. Moreover, looking

to the reconstructed trace planes, maximum total divergence measured is about6mrad.

Knowing the number of beam samples, both the maximum distance between centroids

in space and angles can be extrapolated. We usually cut the entire beam in 13 positions,

so the difference in mean divergence between 2 consecutive slits, considering the limit
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situation of a divergent beam with6mrad spread in angles, is about0.5mrad This lead to

a max. centroid difference of:
(

10000(µm)

13
+ 400(mm) · 0.5(mrad)

)

· 1

14.65(µm)
∼= 66pix (8)

in case during the measurement the maximum possible distance (400mm) between the

screen and the slit plane is used. Guessing a Gaussian distribution of points around the

right value, and dividing that number 6 times (±3σ), one gets a standard deviation of

11 pixels; on the other hand if points would be randomly distributed inside the window,

the standard deviation should be66/
√

12 ≈ 19. The choice is on the middle of the two

numbers, considering too strong the constraint of perfectly Gaussian distribution, but at

the same time considering a uniformly distributed dataset to be noise (although it is only

in a relatively small region of the window, a real signal witha randomly jumping centroid

inside a66 pixels region is to be considered as noise). The used threshold for centroid

standard deviation is15 pixels. Same thing is done on the divergence standard deviation,

directly linked to the rms profile width. In this case the standard deviation used is equal to

the maximum value possible, i.e.1mrad. Another control can be done on the minimum

average area possible: with an rms value of 5 and an height of500, in the worst case of

a signal comparable with a single Gaussian truncated to±2.5 sigma, one finds (from the

tests showed in section (2.4)) an area equal to approximately 6200. A lower limit value of

6000 is then chosen. This last control could be done also before, on the single image.

We prefer to do it at this point because a threshold on the average area seems to be

more adequate, not affected by fluctuations. When applying some strong constraint on

single image one run the risk to make the distribution no moresymmetric, throwing only

one side (that of smaller values) of it and changing the relative mean.

Last consistency control, is the centroid comparison, as briefly anticipated in point

6a and 5b. A check between calculated parameters in different positions is carried on. It

is an important to exclude situations deriving from last twopoints in the above list; these

pathological situations in fact can lead to a non negligibleincrease of emittance, if left

uncorrected.

Nothing can be saida priori on the area distribution along the beam, since almost every

charge-position correlation is possible during beam evolution; as seen before, also angles-

position correlation can change from butterfly-like to banana-like correlation along the

beam evolution. It is very difficult to extrapolate the difference between their measured

distribution and the expected one, since there’s no a real ”expected distribution”.

The situation changes for the centroid distribution; depending on the position of the

slit plane respect to the beam waist, beam itself can be convergent, divergent or at waist.
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In the ideal case of only linear forces acting on the beam and no trace space bifurcations,

all the centroids should be on a line, whose angular coefficient depends on the particular

above mentioned situation. The choice done here is to trust the central centroid positions,

since the bigger signal height minimizes the analysis failure, and fit them, finding the

”centroid line”. Comparing the remaining centroids data (that of lateral positions) with

the theoretical values from the fitted line, a vector of differences is produced. Now a

maximum value for these differences has to be decided.

The deviation from linear behavior comes from both non linear dynamics or X

shaped trace spaces. In the first case, charge, transverse and longitudinal density, energy,

RF injection phase, solenoid current, play an important ruleso that it is very difficult to

theoretically predict what should be the maximum ratio between non linear and linear

forces, situation complicated by the fact that any of the specified parameters has a big

range of used values. It is easier to have a look to the trace spaces drawn and extrapolate

the value from data. A value of 15 pixels maximum deviation has been found.

For the second case of X shaped trace spaces we can extrapolate a value from the

Monte Carlo test showed in sec.(2.4)). The worst case is that in which one has a double

Gaussian profile where the two functions have each the maximum rms and area possible

and the maximum distance between them. So, referring to eqn.(6), taking the2 function

heightsap andas as equal, the distance between them|cp − cs| equal to3σp, and the2

Gaussian rms widthsσp = 20pixels andσs = 10pixels, it comes out that the area of

the principal gaussian (p) is approximately the double of the other (s). In this case the

resulting total centroid (calculated as the weighted mean of individual centroids) has a

distance fromcp, equal to1
3

of the distance between the two functions (it comes out form

the area balance, i.e. if the 2 areas would be equal the resultant centroid would be in the

center), i.e.20 pixels:

cs = cp + 3σp;

At = Ap + As =
3

2
Ap = 2As;

ctot =
1

At

(
∑

i

Api
xi +

∑

i

Asi
xi) =

2

3
cp +

cs

3
= •

• =
3cp + 3σp

3
= cp + σp = cp + 20.

Being this number bigger than the other (15 pixels found before), we choose this

value as threshold. Every centroid out of ideal line for morethan20 pixels is then forced

back on the line, meaning that reconstructed value was wrongand that, most probably,

we are in one of the two last situations described before. In this case neither the area and
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Figure 17: : data footprints; On the X axis the slit number, while on the Y axis the image
number per slit position; as usual, the slit position along the beam are13, while in this
particular case10 images per position were taken. Blue squares are thrown images, while
the others are the remaining images; here the centroid footprint is reported; the slightly
different colors indicate the different centroid values, that in this case raise from right to
left. The right picture indicates same dataset of the left picture, but after the shuffling
procedure.

the rms can be trusted, so that their value is forced to0.

Now data are ready to be used to calculate the beam moments. From dataflow

branch A emittance, alpha and beta parameters are reconstructed from mean values, using

the formula derived in [2], that make use of only these 3 measurable quantities, plus

other mechanical dimensions, such as slit width or slit plane-screen distance etc, for the

calculus. To let the branch B reach the end another step has tobe explained: the Data

selection. At the end of the control procedure, different position have different numbers

of survived images; while this is not a problem for the branchA algorithm that calculates

the mean and doesn’t care about the population, it is crucialfor the other one, that uses

any single value to calculate the emittance.

To better understand in fig(17) we reported the output of thefootprint.msubroutine.

The right picture shows the same dataset of the left one, but after the shuffling. All

the data have been reordered changing the relative lines by pushing as much as possible

the squares towards the top of the matrix, such as the first line has the maximum number

of positions with data. From each of these lines an emittancevalue can be calculated, but a

decision has to be taken whether to use or not a line. Different lines in fact have different

numbers of good data, implying fluctuations in beam transverse dimensions. But are

they real or just consequences of the smaller percent of algorithm success with smaller

SNR? A precise answer to this question is not possible, but thechoice should be done

looking at the shuffled footprint: until the good squares areall consecutive, data should

be considered as good ( in the particular case showed in fig(17), until line number 7, i.e.

the first7 images, leading to7 emittance values) , because a beam transverse dimension

fluctuation is possible and has to be considered. Moreover ifthe beam wouldn’t fluctuate,
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there is no reason to think that the algorithm would behave differently. The choice is taken

once chosen the value of the variable ”level”, asked at the program begin, and having 1

as default value. This variable can go from0 to 4 and it works as follows: once data

is shuffled, number of good data per line is calculated. If level=0 then only the lines

with the maximum number of images is taken into account to emittance calculation (the

first 2 lines in the above case); if level=1 also the next group of lines, that with the higher

number of good images but the previous ones (3rd, 4th and 5th lines), are used to calculate

an emittance value (so emittance values from the first5 lines will be calculated), and so

on for level= 2, 3, 4.

The footprint.msubroutine makes use of a very useful way to represent data, because an

eventual wrong value is immediately shown by its different color.

After data has been selected, next subroutine calculates the emittance in the same

way of the other branch, but this time it is repeated as much times as number of lines

chosen by data selection. Only after this step, the mean emittance, alpha and beta values

are calculated. Error bars come from the type A statistical evaluation definition of mea-

surement. The error bars represent the uncertainties derived by a statistical treatment of

the data. First the mean and standard deviation of the quantity q (the emittance, alpha or

beta in our case) is calculated:

q̄ =
1

N

N
∑

K=1

qk; (9)

s (qk) =

√

√

√

√

1

N − 1

N
∑

K=1

(qk − q̄)2; (10)

where N is the number ofindependentmeasurements. The standard deviation cal-

culated, doesn’t depend on the number of measurements, since having10 or 1000 mea-

surements distributed on the same curve doesn’t change its standard deviation. On the

other hand is intuitive to understand that more measurements lead to more confidence on

the mean value calculated. This is contained inside the mentionedType Auncertainty

definition, that decreases as number of measurements increases:

u (q) = s (q̄) =
s (qk)√

N
; (11)

It represents the uncertainty on the measured mean value after N independent mea-

surements, and will be the length of the error bars on emittance graph.

If one wants to know how big is the interval in which measurandexpected values

can fall, first of all it has to fix the fraction of probability values distribution to encompass

(68, 90, 95, 99%, etc..). Then using as value distribution the Student’s distribution with a
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Figure 18: table of expanded uncertainty. The number found from this table once decided
the fraction of distribution of values to encompass and calculated the number of degrees
of freedom, has to be multiplied for the uncertainty to find the absolute value.
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number of degree of freedom equal to the number of independent measurements (calcu-

lated emittance values), the expanded uncertainty can be calculated from the table shown

if Fig.(18) ([1]). The number found has to be multiplied for the uncertainty:

Up = kp · u (y) → y ± Up; (12)

WhereKp is the value found in the table,u(y) is the measurand uncertainty,y is the

measured value, andUp is the resulting expanded uncertainty.

The program outputs are, besides already mentioned indexesfiles for future trace

space reconstruction and footprint images, theEmitData.txtfile, where the emittance,

alpha and beta values from both procedures are saved together with the emittance uncer-

tainty and the reconstructed entire beam rms.
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4 Plotting the Trace space

4.1 Trace space reconstruction

More than first and second order moments can be extrapolated form the slit measurement

method. In particular, the entire distribution in space andangles can be reconstructed

from the sampling. Obviously the smaller spatial and angle distribution variation one can

reconstruct depends on the sampling rate. It is not criticalfor us since one is interested

above all on the trace space distribution envelope. We typically make use of13 position

along6 beam sigma (3 around the barycenter), one sample everyσ/2;

Once the trace space is reconstructed one can basically calculate any order of mo-

ments, not only the first and the second, having a complete andquantitative feeling on

what is the beam quality in that plane. In theemeteranalysis.mandEmittance.mroutines

we already put the basis for the trace space drawing, choosing the type of profile to save

and the level of correction to use for profile exclusion by selecting the indexes to save

(FindBadProfiles.m). From the first choice depends the profile portion used for the recon-

struction: one can use raw profiles with or without baseline (this second option is better

because it increase the final plot dynamics), profiles after signal detection (ASDprof), in

which all out of5 sigma around the centroid is thrown, or cleaned profiles (cleanedProf)

with only the final profile portion used for parameter calculation remaining.

Figure 19: Trace space reconstruction dataflow.

From the second choice depends the number of profiles used to draw the plot: as

explained in the previous chapter, indexes for profile exclusion can be saved after any

routine step (single image cleaning, single slit cleaning,mean correction and centroid fit)

and now used to exclude or not images that don’t pass a particular control.

The main program isPhaseSpaceScanMain.m; it first asks for the scan directory

and for the type of data to use (profiles and indexes). Then it calls the subroutinePhas-

eSpaceFunc.mthat works into the single measurement folder inside the scan directory;
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Figure 20: example of divergence-profile pixel association. In this case the reference
line is the same for the slit centroid and for the profile pixels; they can also be different,
since the only quantity with physical meaning is the relative difference between different
positions. Once the two reference lines are chosen, they have to remain the same until the
end of the measurement.

it gets the data from already saved files assigning them to variables, and scan theinfo.txt

file to read the specific calibration constants (distance between different slit positions and

distance between slit plane and imaging screen). All the selected profiles taken are then

averaged for each slit position, resulting at the end in one matrix having13 columns filled

with mean profiles, and as much lines as profile length (480 or 640 depending on the

plane considered). Then it calls the sub-subroutinePhaseSpaceReconFunc.m, the core of

reconstruction procedure.

For every position one can assign to each profile pixel a specific divergence value.

The first thing to do is fix one reference line for the slit position and another for the image

pixels. This choice is completely arbitrary, and it will affect only the final trace space

center, but neither its shape nor its moments. In fig.(20) thesame reference is chosen,

but only to simplify the picture. In the algorithm the slit position values are centered

respect to the mean position value, i.e. a mean value is calculated and then subtracted to

each single position. This is possible since the number of steps between each position

is decided and saved by the control software after acquisition, and these numbers are

readable from file (info.txt) in any moment without the need to analyze the data. The

same can not be said for the images; the centroid of the entirebeamlet distribution will be

extrapolated only after the dataset has been analyzed; since we want a phase space plot

which is independent from the emittance analysis (to study the convergence of different

methods, and using one to understand the limits of the other), we don’t want to use the
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other procedure results. So the starting beamlet referenceline will be the pixel0 ( nothing

will be subtracted). Starting from the mean profile matrix, another matrix of the same

size is created, whose elements will be the divergence associate to the relative element of

the profile matrix. For the j-th profile (which means the j-th matrix column or the j-th slit

position), the relative divergence vector will be:

[x
′

i] =
([Xi]j · pixCal) − Xteoj

L
; (13)

wherepixCal is the pixel calibration, i.e. the device imaging system magnification,L is

the distance between slit plane and imaging screen, andXteoj is the projection of the j-th

slit center on the imaging screen (a beamlet with zero mean divergence should have the

centroid coincident with it). At this point the new matrix elements have the dimensions

of radians; maximum and minimum matrix values (minDivandmaxDiv) are saved at this

point for future applications. Now to make a trace space plotone needs to convert these

numbers in indexes; in other words, we already know the X axisvalues, that are given

by the slit positions, but we need the profile positions alongthe Y axis. The matrix of

divergences has to become the matrix of ordinate indexes; todo so one has to divide the

divergence matrix elements for the minimum visible divergence step, given by the image

calibration and by the screen-slit distance:

x
′

min =
pixCal

L
(14)

The new matrix will have only integer numbers, but the arbitrary choice of reference

lines can lead to negative numbers, so that it is necessary toadd to it its minimum value

(+1), making the elements become positive numbers, able to be real matrix indexes.

A new matrix is now created, having a number of lines equal to the max element

value of indexes matrix, and5 more columns, to leave blank space from the plot and

signal begin and end. This new matrix is initialized to zero,and then filled with profiles

in the respective columns, each profile element having as line index the respective value

in the indexes matrix. Last but not least, a vector of real coordinates values has to be

created. For theX axis, at this level the distance between consecutive pixelswill be

equal to the relative slit position distances, while the zero will be the calculated as the

center of positions. For theY axis, the pixel width will be equal to thex
′

min calculated

before. The entire divergence interval is then calculated taking the difference between the

maximum and the minimum values in divergence matrix (minDiv andmaxDiv); this two

number aren’t symmetric respect to zero, their absolute value depending on the reference

line. The arbitrary choice done here is to make the interval symmetric, i.e. make equals

the minDiv andmaxDivabsolute values. Both the phase space matrix and coordinates
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vector are then saved in theElaboratedDatafolder in two different files (PhaseSpace.txt,

PSaxes.txt).

Figure 21: Reconstructed trace spaces in different positions; from the up-left: convergent
beam, beam at waist, divergent beam, divergent beam. The images are reconstructed also
with different profile types, so that different levels of noise are visible around the beam.
A difference in image centroid is clearly visible.

4.2 Trace space interpolation

The reconstructed trace space has a good resolution in Y axis, but a poor X resolution

that leads to images hardly usable for ”by eye speculation”. Because of this difference

between the two planes (see fig.(21)), a two dimensional interpolation is not suitable to

improve image appearance since it increases the both the number of lines and columns,

adding useless data. Moreover the interpolation is always carried on along straight lines

and columns; in our case the output image will be distorted since there is a correlation

between planes. while in this case the interpolation shouldbe done along the trace space

axis (thinking to the signal as an ellipse);

The built-in MATLAB interpolation function creates fictitious undulations and an

unreal signal lengthening with isolated islands of signal (fig.(23)). It derives from the
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Figure 22: Difference from 2D MATLAB linear interpolation (left) and the manual ”
home made” interpolation (right) used in the program.

information about signal correlation, not used in such procedure. A manual interpolation

procedure is implemented tacking into account this correlation: it is a 1D interpolation

along X axis (since we need to improve signal quality only along that axis), applied on

profiles aligned about their maximum value. Some small particulars has to be adjusted,

as that of controlling the interpolation between one profilewith signal and the another

with only noise (typically this happens in lateral slits), that crates unreal signal wakes

since the maximum value of a noisy profile can be everywhere. This is implemented

applying another threshold: the Y distance between two maximum values of the two

central profiles is calculated (GapComp), and every other distance (Gapi) is compared

with this number. If a specific difference is bigger than4 times the measured value, than

the interpolation between the relative profiles is done aligning them with the same gap of

the central slits (Gapi = GapComp), i.e. forcing back the profile maximum on the ellipse

axis.The choice multiply4 times the found value comes from experimental evidences, i.e.

the tails often deviates from the central centroid line, andthis choice as been found to

be a good compromise, since also wrong profiles that could fall inside this range don’t

affect too much the interpolation, and the consequent analysis. Interpolated coordinates

are obtained from the previous one just inserting between2 values a third one equal to

their mean. The interpolation is repeated3 times (this number can be changed very easily

only changing thenumIter value) and results, starting from the non interpolated trace

spaces images showed before, are presented in fig.(23). Thistime the whole image is

centered respect to the maximum value making invisible every centroid fluctuation.

From these trace phases, a lot of beam characteristics can beextrapolated, and also

beam parameters such as emittance, alpha and beta, can be calculated, comparing results
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Figure 23: same images of fig.(21) after the interpolation.
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with the others obtained from the independent way describedin section (2) and (3). Refer

to [3].
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