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Abstract

The focusing properties of different accelerator’s devices, as quadrupoles and bending
magnets, can change the charge distribution of a bunch from round to elliptica one.
Depending on the intensity of this effect, the dynamics properties of the bunch could be
affected. For the SPARC project the ratio between the two semi axes can reach the value of
0.2. The consequent increase of the design emittance reduces the performances of the machine.
In this note we study the electric field generated by a bunch of finite length and elliptical cross
section, travelling with constant velocity v. This electric field is then compared to that of a
bunch with circular cross section of diameter equal to the sum of the two semi axes. The
comparison can be used to verify the validity of the round beam approximation in the study of
the beam dynamics.



1 INTRODUCTION

The focusing properties of different accelerator’s devices, as quadrupoles and bending
magnets, can change the charge distribution of a bunch from round to elliptical one, thus
affecting the dynamic properties of the bunch. For the SPARC project the ratio between the
two semi axes can reach the value of 0.2 thus increasing the design emittance of the machine.

In order to compare the effect of an elliptical cross section bunch on the beam dynamics
with respect to that of a circular cross section bunch, it is important to know the
electromagnetic field produced by the bunch itself.

In section 2 we describe how to obtain the electric field of a uniformly charged infinite
cylinder, with elliptical cross section.

In section 3 we derive the on axis longitudinal and radial electric field of a uniformly
charged cylinder with circular cross section and finite length. The cylinder is moving along the
z-axis at velocity v. For the longitudinal electric field an exact solution can be obtained, whilst
for the radia eectric field only an approximate solution is derived limited to a radial linear
dependence.

In section 4 we obtain an integral expression of the on axis longitudinal and radial
electric field of a bunch moving along the z-axis at velocity v and shaped like a uniformly
charged finite cylinder having an dliptical cross section (fig.1). Furthermore we derive an
approximate solution of the longitudinal electric field by a series expansion of the integral
expression.

In section 5 we solve numerically the above equations and compare the numeric
solutions of the integrals with approximate formulas. Moreover it is well known that for an
infinite bunch with elliptical cross section, the radial electric field calculated on the two semi
axisa and b, is equal to the radial electric field of an infinite bunch with circular cross section
of radius r=(a+b)/2.We show that this general rule cannot be applied for finite
distributions.

In section 6 we relate the electric field's behaviour of a finite length bunch with the so
called aspect ratio defined as A= R/ )L, where R is the bunch radius, L its length and y the
relativistic parameter.
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FIG. 1: Uniformly charged bunch of finite length L, with elliptical cross section
of semi axisa and b.



2 INFINITE CYLINDERWITH ELLIPTICAL CROSSSECTION

The eectric field of an elliptical cross section cylinder with infinite length can be
derived following ref. [7]. Starting from the potential of an elipsoid of semi axis a, b, ¢c and
charge g with c->c0, we obtain the potential of an infinite cylinder with elliptical cross section
moving at velocity v. From the potential we get the radial electric field inside the cylinder  [1-
6]
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where p isthe charge density in the laboratory frame.

Only the radial electric field exists since the longitudinal electric field is zero for an
infinite distribution. It is important to note that the electric fields component on the cylinder
axes, in a and b, are the same, that is E,_, =E,_,, and they are equal to the electric field

generated by an infinite cylinder with circular cross section
_a+b

E, =P rar
2¢,

In section 5 we will discuss if the same method can also be used in the case of a finite
distribution.

3 FINITE CYLINDERWITH CIRCULAR CROSS SECTION
The longitudina and radial electric field for a circular cross section finite cylinder are

[7]:
E,(zr=0=-" [\/R2+7/2(L—z)2—\/R2+7/222+y|z|—7|z—L|] ©)
28,57
and
E (r,2)=2Cr (L-2 2 (4)

+
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wherer istheradia coordinate, L the bunch’slength and p its charge density.

The longitudinal electric field is calculated on the bunch’'s axis z , whilst the radial
electric field is obtained from the on axis longitudinal electric field considering linear terms in
r. As a consequence eg. (4) is an approximation and its accuracy increases with longer bunch.
Both equations (3) and (4) are obtained in appendix A.1.
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FIG. 2:Longitudinal (dashed line) and radial (continuous line) electric field of a bunch of
length L=3.4mm, circular cross section of radius r=1mm, charge g=1nC and relativistic factor
y=1.

The longitudinal and radial electric field, generated by the estimated bunch of the
SPARC project, is shown in fig.2. The longitudinal electric field grows inside the bunch and
its absolute value is at its maximum on the bunch’s head and tail, whilst the radial oneis at his
maximum in the centre of the bunch.

4  FINITECYLINDERWITH ELLIPTICAL CROSSSECTION SECTION

The procedure used to calculate the longitudinal and radia electric field of a bunch with
eliptical cross section is similar to that explained in the previous section. To this purpose we
can use eg. (5) from the appendix A.1 to calculate the longitudinal electric field:

E,(20)=—F I;E{\/r'2+72(L—z)2—\/r'2+7222—7|L—z|—;/|z|}d¢) 5)

Areqy

Theradiusr’, inthe eliptic case, is not constant but depends on the angle ¢ as:

2
r'2:—2b : (6)
1-e“cos® ¢

2
where the eccentricity of the ellipseis e= 1{1—b—2 :
a

It can be easily verified that as L approaches infinite the longitudinal electric field goes to zero.
To simplify the integra (5) we expand eg. (6) in e, up to the fourth order:



2
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In appendix A.2 the second order approximation is derived; that is we neglect the fourth order
term in the expansion (7) and solve the corresponding integral of eg.(5) obtaining

E, =2 {a-E[rzl—ﬂ-E[Az]—LHL—zl—|z|]} 8
2¢,
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with
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Moreover if we keep the fourth order term in eq.(7), the square roots of eq.(5) become

\/b2+k2\/1+—(e2 cosz¢+e4cos4¢>) 9)
b2 +k?2
[2, .2 b? 2 2 4 4
be+K* [1+———(e“cos“g+e” cos” ¢) (20)
b2 +K 2
where
K2 = 2(L —2)2
r (L-2) 11)
l<2:},222

We can expand the square root (9) as



1 b2 2 2 4 4
1+= (e“cos“p+e” cos” @)

2| b? +k?
Vb? +k 8l o7 (e? cos? g+ e* cos® ) * + (12)
+

3( 02 )
4_8(b2 kZ] (e cos® ¢ + e’ cos* ¢)*
+

Expanding the square and the cube in the above expression and keeping the term up to the
fourth order we have:
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The same can be done for eq.(10) getting eq.(13) with k replaced by k'
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Egs.(13) and (14) can be inserted in the integral (5) and solved easily with respect to the
variable ¢ thus obtaining the fourth order approximation for the longitudinal electric field
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The radia eectric field on the contrary can’t be obtained from the longitudinal one asin
the previous case. For an elliptical cross section, in fact, it does not exist any ¢ angle symmetry
(see appendix A.1). For this reason we calculate the radial electric field referring to fig.3 and

eg. (A.1):

3
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FIG. 3: 3D-coordinate system used to calcul ate the radial electric field of auniformly charged
cylinder with éliptical cross section.

The box on the right hand side of fig.3 represents the elementary charge density to be
integrated over the bunch’'s volume. The observer's position is at a distance SP from the
elementary charge and it is placed in the bunch’s volume. Eqg. (16), with r replaced by P,
represents the electric field E. Since we are interested to the radial electric field E,, we
project it on the x-y plane: the elementary electric field component belonging to the plane x-y
is

dE,, = ﬁ(zl‘ﬂz)smg dr (17)
4re, P (1- B%sin? 9)?
where p is the charge density and 6 represents the angle between the axis z and the observer
vector. Referring to fig.4 we obtain the elementary radial eectric field

p(1- B?)sindcosa
Are, P (1- B2 sin? 9)¥2

dE, = dr (18)

where a is the angle between the x-y electric field component and the radial vector r .
In eq. (17) and (18) pdr = ododedl represents the elementary density charge and o is

the distance OS
From fig.4 we can easily write:

Psinfd=P

P=y(z-2+ P

where P’ isthe projection of the observer P on the x-y plane and

(19)



SP'=/o? + R? — 20Rcos(£ — ¢) (20)

R is the observer’s distance from the bunch center and £the angle between the observer and
the x axis.
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FIG. 4: 2D-coordinate system.

Inserting eq.(19) and
1
}/:
1-p?
in eq.(18) we have:
E = | 4/7’[5 P o ododgel 21)
0 (yz(z—l)2+SP' )
with
O<I<L
2
oy
1-e° cos® ¢
O<d<2n

The integra (21) can be solved with respect to the coordinate |, thus obtaning:

dE. = pyr 1 z z-L

s — - — cosaododg
o P \/;/222+SP' \/yz(z—L)2+SP'

Using eg. (20) and
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E (R&2) =7, ~(z- 1)1} (22)
0
with
|, = O-(R_O-COS(CE_¢)) dod
1 .[ J. (R2+O'2—2RO‘COS(§—¢))\/}/222+R2+O'2—2Ro'cos(§_¢) ¢
| = G(R_GCOS(§_¢)) dod
? j I (R2 +o0? - 2Rocos(§—¢))\/72(z— L)? + R? + 0% — 2Ro cos(& — ¢) ’
and
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Eq.(22) represents the radial electric field an observer seesif heis placed at adistance R
from the bunch center with an angle & respect to the x axis coordinate and at a distance z form

the bunch’ stall.

It has been verified numerically that as L approaches infinite the integral (22) approaches

the electric fields of an infinite elliptical cylinder (eg. (1) and (2)).

5 COMPARISON BETWEEN NUMERICAL AND ANALYTICAL FIELD

The two approximations (8) and (15) for the longitudinal electric field can be compared
with the numerical solution of the integral (5) and with the longitudinal electric field of the

circular cross section cylinder with r = %b. Fig.5 shows the comparison for different values

of the eccentricity:
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FIG. 5: Comparisons between the longitudinal electric field obtained numerically (dashed
line), the longitudinal electric field of the circular cross section case with r=(a+b)/2
(continuous line) and the longitudinal electric field approximated by the 2™ and the 4™ order
terms (dotted line). The length, the charge and the relativistic factor are the same of fig. 2; the
eccentricity is (a) e=0.999671 (b/a=0.026) , (b) e=0.979055 (b/a=0.2), (c)
€=0.830901(b/a=0.556) , (d) e=0.56296 (b/a=0.826).

When the eccentricity is zero, that is the bunch has a circular cross section, all the graphs
coincide; more the eccentricity approaches to unity, more the graphs draw away. For all the
different eccentricity’s values, the circular cross section bunch electric field (continuous line)
is the closest to the numerical solution, as can be seen form fig.5.



Fig.6 shows a comparison between the radial electric field obtained numerically from the
above eg. (22), on the semi axisa ({=0) and b (& = %), and eg. (4), that isthe radial electric

field for acircular cross section finite bunch whoseradiusis r = %b )

.

O7\\\\i\\\\i\\\\i\\\\i\\\\\%\\vgiA\#\ T
-0.001 O 0.001 0.002 0.003 0.004 0.005 0.006 0.007 -0.001 O 0.001 0.002 0.003 0.004 0.005 0.006 0.007
z[m] z_[m]
3) b)
L fi\ \semi axis b ? tﬁi
5 } NN i
R B /4 R N e R S 8 4 N SER FRSR S—— .
: VA 1 :
circular A
N R A S = 3 | P R e Sttt =
E : £ ‘ :
> 3 > : :
= 3 =3 ‘ 3
G T | w ? |
2 [T ! e B \ N A S !
D SR SRS SONSNONS SOS S R S i D SR SRS SOUSONS SOS S \ ,,,,,,,,,,,,,,,,,,,,,,,,,,, i
0 0 L
-0.001 O 0.001 0.002 0.003 0.004 0.005 0.006 0.007 -0.001 O 0.001 0.002 0.003 0.004 0.005 0.006 0.007
z[m] z[m]

b) d)



N T
L S S S A B Bt
-0.001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

z [m] D)
FIG. 6: Comparisons between the radial electric field obtained numerically on the semi axisa
and b (=0 and ¢=7/2 respectively) (dashed lines) , the radia electric field of the circular cross
section case with r=(a+b)/2 (continuous line). The length, the charge and the relativistic factor
are the same of fig. 2; the eccentricity is (a) e=0.999671 (b/a=0.026) , (b) e=0.979055
(b/a=0.2), (c) e=0.830901(b/a=0.556) , (d) e=0.56296 (b/a=0.826), (e) e=0 (b/a=1) .

In the case of an elliptical cross section finite bunch, as can be seen from the figures, the
radial electric field calculated on the magor semi axis, x=a, is different from the one
calculated on the minor semi axis, y=b. The radial electric field in x=a is close to the circular
cross section one even for high eccentricity; meanwhile the one calculated in y=b is still far
from the approximation for lower eccentricity. Of course as the eccentricity approaches to zero
all the plots become closer; when the eccentricity is zero the fields, calculated on the two semi
axis, are of course the same. It isimportant to note that, since the radial electric field of eq. (4)
is an approximation, the fields of fig.6e do not coincide perfectly.

6 ROLE OF THE ASPECT RATIO PARAMETER IN THE FIELD FORM
FACTOR

We can explain theradial fields' different behaviour on the two semiaxis, with respect to
the infinite length case, observing that in this case the length of the bunch plays an important
role. When the eccentricity is close to unity then b<<L and as a consequence the field's
behaviour is similar to that of an infinite bunch, that is it is constant with the longitudinal
coordinate z and shows a discontinuity as it reaches the edges of the bunch. On the contrary
since a is comparable to the bunch length L its behaviour is different from an infinite bunch.
As L approaches zero we obtain the radia electric field of an elliptical disk uniformly charged.
Using eg.(22) we can numerically verify that the radial electric field in x=a and y=b are still
different.

Besides the bunch is moving with a velocity v along the z axis, so when its velocity
increases, or the relativistic parameter y increases, the radial electric field becomes more and
more squared. Of course the same behaviour can be obtained for a circular cross section bunch



as well, just increasing its length or increasing its relativistic parameter y as shown in fig.7.
Note that the longitudinal electric field approaches zero as for an infinite bunch.
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FIG. 7: Radial (a) and longitudinal (b) electric field for acircular cross section bunch. The
length and the charge of the bunch are the same of fig.2

It follows from the above explanation that the field' s behaviour in x=a and y=b depends
on the size of the elipse’s semi axis with respect to the bunch’'s length or its relativistic
parameter y, that is on the so called aspect ratio (ref. [8]):

A=_—
r

where R is the mgjor semi axis a or the minor semi axis b. We deduce that as the aspect ratio
decreases the electric field becomes more and more sguared.

In appendix A.1 the longitudinal and radial electric field, for a circular cross section
bunch, as a function of the aspect ratio, are obtained. For an elliptical cross section cylinder the
fields can be written as a function of the aspect ratio aswell:

E (A, 2)= A{Z:_ {E'L—(f—l)'z}
0

P J.Zﬂ u?+1-%)2 - u2+[ET—1—E
dreg 0 |\ L L L

z

L

E,(z0)=

s
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where
5 :J' J- s(A- scos(ch—qﬁ)) dsdg
(A2 +s% —2Ascos(é - ¢))\/£Ej + A% + % — 2Ascos(é — @)
|2' :J' J' S(A—SCOS(i— ¢)) d&j¢
(AZ +s% - 2Ascos(¢ — ¢))\/(E —1) + A? + 5% —2Ascos(& - ¢)
and

O<¢<2r

From the previous considerations we deduce that the longitudinal electric field of afinite
length bunch with eliptical cross section iswell approximated by the longitudinal electric field

of a finite length bunch with circular cross section and radius r :a%b. On the contrary the

radial electric fields on the envelope x=a and y=b become more and more different as the
aspect ratio A increases and the circular approximation can’'t be used anymore. Fig.8 shows the
ratio between the two radia fields when the aspect ratio grows for different eccentricity’s

value. The aspect ratioinfig.8is A:%

Note that when the eccentricity decreases the ratio between the two fields becomes

closer to unity even for a higher aspect ratio.
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FIG. 8: Ratio between the radia electric field in x=a and y=b in z=L/2 as afunction of the
aspect ratio A for different eccentricity e=0.999671 (b/a=0.026), e=0.95 (b/a=0.31), e=0.9
(b/a=0.43), e=0.8(b/a=0.6) and e=0.5 (b/a=0.866).

7  CONCLUSIONS

In this paper we reviewed the analytical formulas for the electric field generated by a
cylindrical bunch either of infinite length with elliptical cross section and of finite length with
circular cross section. Moreover, we obtained the electric field of a finite length bunch with
elliptical cross section and compared its numerical solution with the electric field of a circular

cross section bunch of finite length whose radiusis r = %b . Eveniif thisrulefitstheinfinite

cylinder case, it is not appropriate for the finite cylinder case, unless the eccentricity is lower
than 0.8 for y=1(fig.6d and fig.8). The different behaviour of these two cases can be

explained by the aspect ratioAzﬁ. In particular the radial electric field of a finite bunch

becomes that of an infinite bunch when A becomes small, that is when the length or y
increases. For example, for a very high eccentricity (e=0.99) but small aspect ratio (A=0.01)
the circular cross section approximation can still be used (fig.8).
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10 APPENDIX

A.l REFERENCES LONGITUDINAL AND RADIAL ELECTRIC FIELD FOR A
CIRCULAR CROSSSECTION CYLINDRICAL BUNCH

We derive the longitudinal and radial electric field of a uniformly charged finite cylinder
with circular cross section (ref.[8]).

The bunch is moving along the z axis at velocity v=/c. The electric field produced by a
charge g, moving at velocity Ac and located at the origin of a polar coordinate system, fig.1, in
the observation point P(r, 6, ¢) , is:

3
2

Are,r?(1- B sin? 6)

-

v

~

FIG. 1. Spherical coordinate system.

Using eq.(23) and referring to fig.2 we obtain the elementary longitudinal electric field
calculated on the bunch’s axis:

0, (2,1 = 0) = p(— %) coso rdrdqﬁdL (24)

4re ,P?(1— B2 sin? §)2

the total longitudinal electric field is that

2z (R L p(l— ?)cos@ rdrded
Ez(Z,0)=jO .[o Io pA-57) ¢d3

Az P?(1— B2 sin? §)2
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FIG. 2: Longitudinal electric field calculated on the bunch axis.

From fig.2 we have:

cosé?—z—
P
sims?—L
P (25)
PZ=r?4(z-1)
y= 1
1- 2
Using eg. (25), eg. (24) becomes
)* rdr ¢d
27 2r z—)rdrdedl
4re,P* (1~ B* ) (r +7%(z-1)?
Making the substitution
z-1=7
the integral can be first solved with respect to |
rdr R rdr

E,(20=—2—|["

4reyy

and then with respect to r:

0 \/r2+;/2(L—z)2

R
Ez(z,0>=$[Jr2+y2(L—z)2—Jr2+7222]o
0

thus obtaining



+72(L-2)% =R +7%Z° +;/|z|—7|z—L|}j¢ (27)

E,(2,0) = 4;’

Eq.(27) can be easly integrated with respect to the coordinate ¢. We obtain the on axis
longitudinal electric field of acircular cross section cylindrical bunch of length L:

£(20)= 32| R+ 2(L-2)” [RP /72 e fd el | 29

Theradial electric field for a point inside the bunch is calculated in ref. [8] from the relation:

E (r,2) = i{ﬁ—i E, (2,0)} (29)
2| e, o0z
On the bunch’s envelope eg.(29) becomes
Rl p 0
=—|—- 0 30
r 2{80 3% 2(z, )} (30)

The above equations are approximated sice they are obtained keeping only linear terms with r.
From eqg. (30) and the longitudinal electric field obtained in eq.(28) we get:

(L-2) 7z
E (R2)= 4
RLRZH/ 2(L-2)? \/R2+7/222

Both expressions (28) and (31) can be written in terms of the aspect ratio

(31)

A==
t
asinref.[§]
q 2 Z 2 2 Z Z
E,= AT+(1-——) = A +2° +|—|-[1-—
i ZﬂgoRz{V 4= L ‘ L}
or
pL 2 Zy2 2,2, |2 z
E,=2—1 A +(1-—)" -\ /A“+z° +|—|—-1-—
‘ 230{\/ 4 L ‘ L}

and
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Er(R,z):fg +
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aR2L

being p =

A.2 SECOND ORDER APPROXIMATION FOR THE ON AXIS LONGITUDINAL

ELECTRICFIELD IN AN ELLIPTICAL CROSS SECTION BUNCH
To smplify the integral

E,(20)=—L— [

2 2. N2 [.2.22 .
ok {\/r 72 (L=2)2 = r24y222 _4jL—4 7|z|}d¢ (32)

we expand ther’ term as follow

I2 b2

r=—~
1-e? cos? ¢

=b?(1+e? cos® ¢ +...) (33)

In eg. (33) we neglect the term to the forth, obtaining a second order approximation. Inserting
(33) ineg. (32), we can write eq.(32) as
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where
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