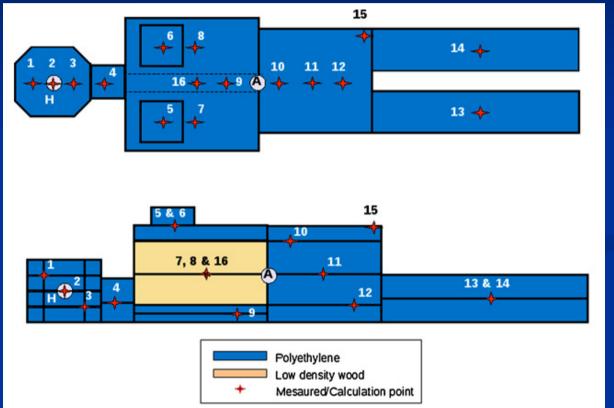
Patient neutron dosimetry with TNRD

Michele Lorenzoli

Radiotherapy


 Destroying tumors through ionizing radiation.
Safeguarding the viability of organs at risk: therapy as a potential source of new neoplastic processes.

→ Patient neutron dosimetry study

Sánchez-Doblado et Al.

- Development of a methodology in order to correlate the neutron fluence inside the treatment room and the neutron dose in patients.
- SRAM (Static Random Access Memory) based detector for room neutron fluence.
- > TLD dosimeters for in-phantom passive measurements.

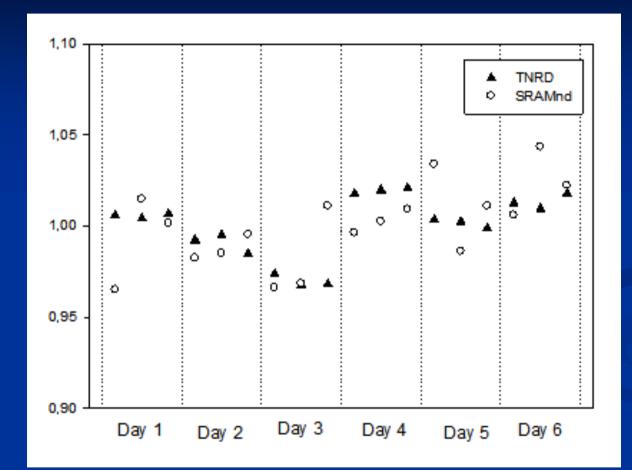
NORMA phantom

Organs and tissues	NORMA points
Thyroid	4
Oesophagus	4, 9, 16
Lung	7, 8
Breast	5, 6, 15
Stomach	9, 11, 16
Liver	9, 10, 11, 16
Colon	11, 12
Urinary bladder	10
Ovary	11, 12
Skin	15
Bone	1, 3, 9, 12, 13, 14, 15
Bone marrow	9, 12, 15
Remainder	All except 7, 8, 15

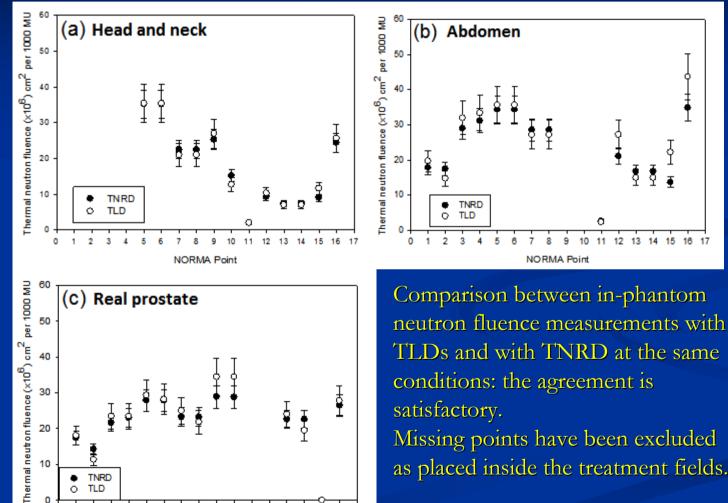
TNRD

- Compact detector.
- Possibility of both room fluence and in-phantom applications.
- Direct online measurements of fluence and its time evolution.

Room setup



In-phantom placing of a TNRD probe


Room measurements: TNRD probe (up) and SRAM neutron detector (down)

Reproducibility tests

Multiple measurements with 1000 MU (Monitor Unit) performed with TNRD and SRAMnd; TNRD presents a standard deviation of 1.70%, better than the 2.21% of the SRAMnd.

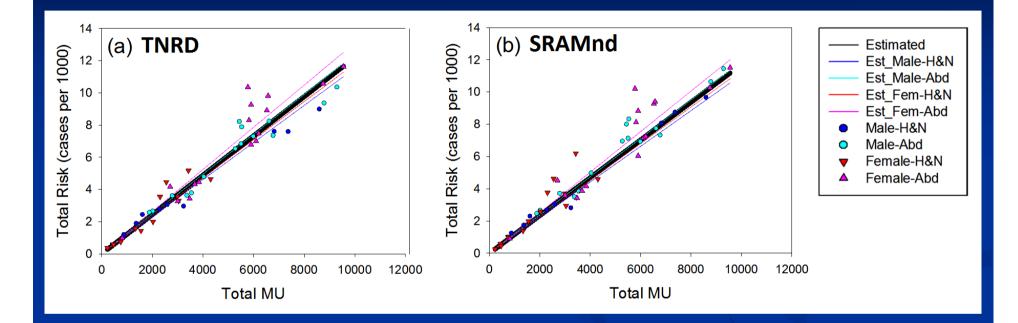
Methodology confirmation: in-phantom measurements

9 10 11 12 13 14 15 16 17

TNRD TLD 0

> 2 3

4 5 6


78 NORMA Point

0

0

as placed inside the treatment fields.

Patients risk assessment

Comparison of experimental and estimated Total Risk (TR), cases per 1000, for radiotherapy patients: good agreement between the two detector results and the values expected from the facility characterization.

Conclusions

- TNRD has accomplished the requirements of SRAMnd, with even better reproducibility and sensitivity.
- This enables TNRD use with the existing methodology for direct estimation of equivalent dose in organ, as confirmed by the comparison of the patients risk assessment.
- In addition, TNRD opens the possibility of active in-phantom measurements, i.e. estimation of neutron peripheral dose in radiotherapy, allowing to improve the existing general models and to generate new specific ones.