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An important early prediction of Einstein’s general relativity1–3

was the advance of the perihelion of Mercury’s orbit, whose
measurement provided one of the classical tests of Einstein’s
theory4. The advance of the orbital point-of-closest-approach
also applies to a binary pulsar system5,6 and to an Earth-orbiting
satellite3. General relativity also predicts that the rotation of
a body like Earth will drag the local inertial frames of
reference around it3,7, which will affect the orbit of a satellite8.
This Lense–Thirring effect has hitherto not been detected with
high accuracy9, but its detection with an error of about 1 per cent
is the main goal of Gravity Probe B—an ongoing space mission
using orbiting gyroscopes10. Here we report a measurement of
the Lense–Thirring effect on two Earth satellites: it is 99 6 5 per
cent of the value predicted by general relativity; the uncertainty
of this measurement includes all known random and systematic
errors, but we allow for a total 610 per cent uncertainty to
include underestimated and unknown sources of error.

Another general relativistic shift of a gyroscope has already been
measured to an accuracy of about 0.35% using the Moon’s orbit11,12:
the de Sitter or geodetic precession3. This shift arises from the effect
of the gravitational field on the velocity of an orbiting gyroscope.
But whereas the de Sitter effect is just due to the mass of a central
non-rotating body, the Lense–Thirring effect is due to the rotation
of a mass and displays the new general relativistic phenomenon that
currents of mass generate additional space-time curvature3. This
phenomenon has been called gravitomagnetism3,7 for its formal
analogy with magnetism in electrodynamics. Though the Lense–
Thirring effect may play a basic dynamical role in the accretion
disk of a supermassive spinning black hole13,14 and in the alignment
of jets in active galactic nuclei and quasars7, it is however extremely
small on a satellite orbiting the Earth. For example, for a
satellite with an orbital semimajor axis of about 12,000 km, the
shift of its node (the intersection of the Earth’s equatorial plane
with the satellite’s orbit, see Fig. 1) is only about 33 mas yr21

(mas ¼ millisecond of arc), that is, nearly 1.9 m yr21. However,
using the technique of laser-ranging with retro-reflectors to send
back the short laser pulses, to date we are able to measure distances
to a point on the Moon with a precision of a few centimetres, and
distances to a small artificial satellite with a precision of a few
millimetres.

In the present analysis we used the two laser-ranged satellites15,16

LAGEOS (NASA) and LAGEOS 2 (NASA-ASI). Their instantaneous
position can be measured with a precision of a few millimetres
and their orbits, with semimajor axes aLAGEOS < 12;270 km and
aLAGEOS2 < 12;210 km, can be predicted, over 15-day periods, with
a root-mean-square of the range residuals of a few centimetres. This
uncertainty in the calculated orbits of LAGEOS and LAGEOS 2 is
due to errors in modelling their orbital perturbations and, in
particular, in modelling the deviations from spherical symmetry
of the Earth’s gravity field, mathematically described by a spherical
harmonic expansion of the Earth’s potential.

The current decade has been called the ‘decade of geopotential

research’, because we already have two unique missions in orbit,
studying and mapping the gravitational field of the Earth and its
temporal variations: DLR’s CHAMP (Challenging Minisatellite
Payload), launched in 2000, and NASA’s GRACE (Gravity Recovery
and Climate Experiment, see Fig. 1), launched on 17 March 2002, to
be joined in orbit in mid-2006 by ESA’s GOCE. GRACE consists of
two identical spacecraft, very similar in design to CHAMP, orbiting
in a polar orbit in tandem, some 200–250 km apart. Each of them
carries a very precise accelerometer to measure non-gravitational
forces, and they both range to each other via a K-band radar that
produces a history of the inter-satellite distance variations to better
than one micrometre. With non-gravitational forces adequately
measured by the on-board accelerometers, the observed inter-
satellite distance variations are used to determine the errors in the
current models of the terrestrial gravitational field, thereby leading
to improvements in the medium wavelengths of the model describ-
ing the field to a resolution of 200–250 km half wavelength. At the
same time, tracking of both satellites by GPS (Global Positioning
System) provides the information to improve the long-wavelength
part of the model, including the zonal coefficients which describe
the axially symmetric part of the Earth’s potential. In the result
presented here, we have used the recent Earth gravity model,
EIGEN-GRACE02S, obtained by the GeoForschungsZentrum
(GFZ) group using the GRACE satellites17. (The EIGEN-GRACE02S
gravity field coefficients and their calibrated errors are available
at http://op.gfz-potsdam.de/grace/index_GRACE.html; the GRACE
mission is also described at http://www.csr.utexas.edu.) EIGEN-
GRACE02S is accompanied by a set of calibrated error estimates
(although still preliminary in nature), appropriate for the assess-
ment of the final error budget of our result.

In our previous analyses9, we used the Earth gravity models
JGM-3 and EGM96; owing to the limited accuracy associated with
their low degree zonal terms, it was therefore necessary to use three
observables: the node of LAGEOS and the node and perigee of
LAGEOS 2. However, whereas the node is a very stable orbital

Figure 1 The ‘orbital gyroscope’ used to measure the Lense–Thirring effect. The

‘gyroscope’, indicated by the long red arrow, is the combination of the nodal longitudes of

the LAGEOS satellites; it is not affected by the huge nodal rate of the LAGEOS satellites

because of the Earth’s quadrupole moment. This combination is described by equation

(1); it is independent of the residual nodal rates due to the error in the Earth quadrupole

moment. The blue drawing shows the orbital configuration of the GRACE satellites used to

accurately determine the Earth’s gravity field.
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element under a number of non-gravitational perturbations, the
perigee is affected by several perturbations difficult to model18,
implying an accuracy not easy to be confidently assessed. Never-
theless, by analysing the uncertainties in the spherical harmonic
coefficients of the recent Earth gravity model EIGEN-GRACE02S,
we find that the only relevant uncertainty in the orbit of the
LAGEOS satellites, comparing it with the magnitude of the
Lense–Thirring effect, is the one, dJ2, in the Earth’s quadrupole
moment, J2, which describes the Earth’s oblateness. In the EIGEN-
GRACE02S model, the relative uncertainty dJ2/J 2 is about 1027.
This uncertainty corresponds on the orbits of the LAGEOS satellites
to a shift of the node larger than the Lense–Thirring effect. However,
the orbital uncertainty due to all the other harmonics is only a few
per cent of the general relativity shift. Therefore, in order to
eliminate the orbital uncertainty due to dJ2 and in order to solve
for the Lense–Thirring effect, it is necessary and sufficient to use
only two observables.

The two orbital observables that we analysed are the two nodes of
the LAGEOS satellites (Fig. 1). After modelling all the orbital
perturbations, apart from the Lense–Thirring effect, we are able
to predict the LAGEOS satellites’ orbit with an error (root-mean-
square of the residuals) of about 3 cm for a 15-day arc, correspond-
ing to about half a millisecond of arc at the LAGEOS satellites’
altitude. The Lense–Thirring effect is, in contrast, 31 mas yr21 on
the LAGEOS node, and 31.5 mas yr21 on the LAGEOS 2 node, as
calculated by the Lense–Thirring formula: Q_ ¼ 2J%=½a

3ð12
e2Þ3=2�; where Q_ is the satellite’s rate of change of the nodal
longitude, J% is the Earth’s angular momentum, and a and e are
the satellite’s semimajor axis and orbital eccentricity, respectively.
The residual (calculated minus observed) nodal rate of the LAGEOS
satellites, dQ_OBS; is therefore: (residual nodal rate) ¼ (nodal rate

from dJ 2 error) þ (nodal rate from other dJ 2n errors) þ (Lense–
Thirring effect) þ (other smaller modelling errors), where the dJ 2n

are the errors in the Earth’s even zonal harmonic coefficients, J 2n, of
degree 2n $ 4. We can then solve for the Lense–Thirring effect19 the
system of the two observed residual nodal rates, dQ_OBS; and
simultaneously eliminate the error due to the dJ 2 uncertainty
(see Methods). We accordingly combined the residuals as: dQ_

OBS

I þ
kdQ_

OBS

II ; where the subscripts I and II indicate respectively LAGEOS
and LAGEOS 2, and k ¼ 0.545 is the ratio of the coefficients, K 2, of
J 2 in the nodal rate equations of LAGEOS and LAGEOS 2. In other
words, k ¼

K2
I

K2
II

is that coefficient that makes the combination Q_ I þ
kQ_ II of the nodal rates of LAGEOS and LAGEOS 2 independent of
any contribution of J 2. Indeed, we have: Q_ IðJ2Þ þ kQ_ IIðJ2Þ ¼ K2

I J2 þ
k K2

II J2 ¼ 0; whereas by combining the nodal rates with the k factor
we get for the Lense–Thirring contribution: Q_

Lense–Thirring

I þ
kQ_

Lense–Thirring

II ¼ ð31þ k31:5Þmas < 48:2 mas: The maximum
error in this combination of the residuals due to the dJ 2n is 4% of
the Lense–Thirring effect (see Methods and Supplementary Infor-
mation).

We analysed nearly eleven years of laser-ranging data, from
January 1993 to December 2003, corresponding to about one
million normal points, that is, to about 100 million laser ranging
observations from more than 50 ILRS stations distributed all over
the world20. The total uncertainty of our measurement is, including
systematic errors, ^5% of the Lense–Thirring effect and ^10%
allowing for underestimated and unknown error sources (until
more accurate Earth gravity field models are available, and until
additional simulations are completed to exhaustively study the
modelling of non-gravitational perturbations and measurement
errors). For example, if we consider the time-independent gravita-
tional error (root-sum-square) to be three times larger, we get a
corresponding error of 9% and a total uncertainty of less than 10%
(see Methods and Supplementary Information).

In Fig. 2 we show the observed residuals of the nodal longitudes of

Figure 2 Observed orbital residuals of the LAGEOS satellites. The residual nodal

longitudes of the LAGEOS satellites, dQ, were combined according to equation (1). In

black (a) is the raw, observed, residual nodal longitude of the LAGEOS satellites without

removal of any signal, whereas in blue (b) is the observed residual nodal longitude after

removal of six periodic signals. The best-fit line (13-parameter fit) through these observed

residuals has a slope of 47.9 mas yr21. In red (c) is the theoretical Lense–Thirring

prediction of Einstein’s general relativity for the combination (equation (1)) of the nodal

longitudes of the LAGEOS satellites; its slope is 48.2 mas yr21.

Figure 3 Post-fit orbital residuals of the LAGEOS satellites. These, 14-day, residuals of

the nodal rates, d _Q; combined using equation (1), correspond to the case (a) of the fit of a

secular trend only (black stars) and to the case (b) of a trend plus phase and amplitude of

six periodic signals (blue stars) with periods of 1,044, 905, 281, 569, 111 and

284.5 days. We also fitted the residuals with a straight line plus the two LAGEOS nodal

frequencies and plus ten signals. The maximum relative variation in the measured value of

the Lense–Thirring effect in all the different fits was 2%.

letters to nature

NATURE | VOL 431 | 21 OCTOBER 2004 | www.nature.com/nature 959



©  2004 Nature  Publishing Group

the LAGEOS satellites, dQ, combined according to equation (1) in
Methods, that is, we plot the residuals of the nodes of Fig. 1,
combined with k ¼ 0.545. The best fit line through the raw residuals
in black (one-parameter fit) has a slope of 47.4 mas yr21; the root-
mean-square of these post-fit residuals is 15 mas. In blue are the
residuals after removal of six main frequencies, corresponding to a
13-parameter fit with a secular trend plus phase and amplitude of
six main signals (see Methods). In this case the secular trend is
47.9 mas yr21, but the root-mean-square of these post-fit residuals
is only 6 mas. In red is the Lense–Thirring effect predicted by general
relativity for the combination of the LAGEOS nodal longitudes,
which amounts to 48.2 mas yr21. Therefore, corresponding to the
13-parameter fit (in blue) of Figs 2 and 3, the observed Lense–
Thirring effect is 47.9 mas yr21, corresponding to 99% of the
general relativistic prediction. In conclusion, this analysis confirms
the general relativistic predictions of frame-dragging and the Lense–
Thirring effect. A

Methods
Data analysis
The laser-ranging data were processed using NASA’s orbital analysis and data reduction
software GEODYN II21, over 15-day periods (with overlap of 1 day), following ref. 22,
except for the use of the recent Earth static gravitational model EIGEN-GRACE02S. Solar
radiation pressure, Earth albedo and anisotropic thermal thrust effects were modelled
according to refs 23–26 using the LOSSAM-2004 model27 (LAGEOS Spin Axis Model) of
the satellites’ spin axis, and the Earth tides using the GOT99.2 (Goddard/Grenoble Ocean
Tide) model28. Lunar, solar and planetary perturbations (JPL ephemerides DE-403) were
included in the equations of motion and Earth’s rotation was modelled from very long
baseline interferometry and GPS. The Lense–Thirring effect was set equal to zero. For
every 14-day period we obtained one node residual for LAGEOS and one for LAGEOS 2,
which were then combined according to equation (1):

dQ_
OBS
I þ kdQ_

OBS
II ¼ Q_

Lense–Thirring
I þ k _Q

Lense–Thirring

II ^
2n$4

X
K2n

I dJ2nj j þ k K2n
II dJ2nj j

� �
ð1Þ

where k ¼ 0.545 and K 2n, well determined functions of the orbital elements, are the
coefficients in the nodal rate equations of the even zonal harmonics (even degree and zero
order), J 2n, of the Earth’s gravity field.

Error assessment
The dominant error in modelling the nodal drift of the LAGEOS satellites is due to the
errors, dJ 2n, in the static part of the J 2n. We assessed this error by using the EIGEN-
GRACE02S model, with its dJ 2n calibrated (that is, including systematic errors)
uncertainties, and using our combination, equation (1), to eliminate the largest
uncertainty, dJ 2, in the Earth’s quadrupole moment. By taking the square root of the sum
of the squared errors due to the dJ 2n in equation (1), we found a relative error of about 3%
of the Lense–Thirring effect on the LAGEOS satellites. However, to get an upper bound to
this error (since the covariance matrix was not available to us) we simply added the
absolute values of the errors due to the dJ 2n in equation (1); we thus obtained an error
estimate of about 4% of the Lense–Thirring effect.

To assess the error in modelling the nodal drifts due to all the other orbital
perturbations, we used two different methods: (1) an a priori detailed analysis of the
uncertainties in the perturbations affecting the LAGEOS satellites, based on the extensive
scientific literature on this subject23–27,29–31, and (2) an a posteriori analysis of the orbital
residuals. Both methods produced the same result. Using the a priori error analysis, for the
gravitational perturbations (solar and lunar Earth tides, secular trends in the even zonal
harmonics of the Earth’s field and other periodic variations in the Earth’s harmonics), we
obtained, over a period of 11 yr, a total relative uncertainty of about 2% of the Lense–
Thirring effect30. For the non-gravitational perturbations (atmospheric drag, solar
radiation pressure, Earth albedo, anisotropic thermal radiation from the satellites, both
from solar radiation and from the Earth’s infrared radiation heating) we got, over a period
of 11 yr, a total relative uncertainty of about 2% of the Lense–Thirring effect30. We also
included an error of about 2% due to stochastic errors, such as seasonal variations in the
Earth’s gravity field, and observation biases.

Using the orbital residuals and considering that the main periods of the non-
gravitational perturbations and of the tidal effects are well determined23–31, we
performed a number of different fits of the residuals. We fitted the residuals with a secular
trend only, or with a trend plus a different number of the main periodic terms (fitting both
phase and amplitude). These terms correspond to various linear combinations of the
LAGEOS satellites’ nodal periods (1,044 and 569 days), the Earth’s revolution
(365.25 days) and the Moon’s nodal period (18.61 yr). In addition, we also performed a
Fourier analysis of the residuals and removed the main identified frequencies in our fit.
The maximum variation we found in all these different fits was at most a 2% change in the
measured value of the Lense–Thirring effect, confirming that the error in the modelling of
the periodic perturbations may in the worst case affect our Lense–Thirring determination
at a level of about 2% only.

Total uncertainty
Finally, considering all the error sources described above and in agreement with previous
error analysis of the LAGEOS III-LARES experiment29–31 (see also Supplementary

Discussion), we obtained a total root-sum-square error of ^5% of the Lense–Thirring
effect. This uncertainty refers to all the known errors, however, allowing for unknown and
unmodelled error sources we assume a ^10% uncertainty in our measurement. For
example, if we double the maximum time-independent gravitational error and the non-
gravitational and time-dependent gravitational errors, we get respectively 8%, 4% and 4%

errors, and thus a total uncertainty of 10% of the Lense–Thirring effect.
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18. Bertotti, B., Farinella, P. & Vokrouhlický, D. Physics of the Earth and the Solar System 2nd edn (Kluwer

Academic, Dordrecht, 2003).

19. Ciufolini, I. Measurement of the Lense-Thirring drag on high-altitude laser-ranged artificial satellites.

Phys. Rev. Lett. 56, 278–281 (1986).

20. Noomen, R., Klosko, S., Noll, C. & Pearlman, M. (eds) Toward millimeter accuracy. Proc. 13th Int.

Laser Ranging Workshop (NASA CP 2003–212248, NASA Goddard, Greenbelt, MD, 2003).

21. Pavlis, D. E. et al. GEODYN Systems Description Vol. 3 (NASA GSFC, Greenbelt, MD, 1998).

22. McCarthy, D. The 1996 IERS Conventions (Observatoire de Paris, Paris, 1996).

23. Rubincam, D. P. Yarkovsky thermal drag on LAGEOS. J. Geophys. Res. B 93, 13805–13810 (1988).

24. Rubincam, D. P. Drag on the LAGEOS satellite. J. Geophys. Res. B 95, 4881–4886 (1990).

25. Rubincam, D. P. & Mallama, A. Terrestrial atmospheric effect on satellite eclipses with application to

the acceleration of LAGEOS. J. Geophys. Res. B 100, 20285–20290 (1995).

26. Martin, C. F. & Rubincam, D. P. Effects of Earth albedo on the LAGEOS I satellite. J. Geophys. Res. B

101, 3215–3226 (1996).

27. Andrés, J. I. et al. Spin axis behavior of the LAGEOS satellites. J. Geophys. Res. 109, B06403 (2004).

28. Ray, R. D. A Global Ocean Tide Model from Topex/Poseidon Altimetry: GOT99.2 (NASA Tech. Memo.

209478, NASA GSFC, Greenbelt, MD, 1999).

29. Ciufolini, I. A comprehensive introduction to the LAGEOS gravitomagnetic experiment. Int. J. Mod.

Phys. A 4, 3083–3145 (1989).

30. Ciufolini, I. et al. WEBER-SAT/LARES Study for INFN (Università di Lecce, Lecce, 2004).
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