Design study for a Super \Phi Factory at LNF

С. Biscari for the DA ФNE team LNF, INFN

PAST, PRESENT AND FUTURE

"No first generation machine has ever improved by more than a factor 10 a crucial parameter"

J.P.Delahaye, CLIC Project Leader, october 2003

	E _{cm} GeV	logged ∫L	requested ∫L
В	10.6	~ 300 fb ⁻¹	10ab ⁻¹
τ	3.9	< 1 fb ⁻¹	>100fb ⁻¹
light quarks	2	< 10pb ⁻¹	500pb ⁻¹
Φ	1	< 1 fb ⁻¹	> 100fb ⁻¹

requested /L for next collider generations

Frascati colliders

		E _{cm} (GeV)	L (10 ³²)
ADA	1960	0.4	
ADONE	1969/78 1990/93	0.6/3.1	0.003
DAΦNE	1998/2003 2003/2006	1.	1.
	FUTURE	(x 2)	(x 100

PEAK Luminosity increase bunch density increase collision frequency

AVERAGE Luminosity continuos injection

 $L = \frac{f_{coll}}{4\pi} \frac{N^+ N^-}{\sigma_x^* \sigma_y^*}$

high currents

Singlebunch instabilities Multibunch instabilities Feedbacks impedance ECI CSR Power : vacuum, rf, cooling

beam-beam

crossing angle low β_y – short bunch length resonances dynamic aperture blowup

Background

masks collimators cooling touschek scattering lattice phase advances IR designs

lifetime - injection

beam-gas scattering touschek effect beam-beam loss rate

 $\tau \sim hours \rightarrow \tau \sim few minutes$ $L \sim 10^{34} \rightarrow L \sim 10^{36}$

continuos injection

Basic concepts:

Luminosity is generally higher for high energy rings for several reasons, some of the more beneficial are:

1) Tune shifts scales with 1/Energy (E) leading to a fundamental linear increase of the luminosity vs Energy

2) Radiation damping-time decrease with 1/E³ leading to higher limits for tune-shifts

- 3) Touschek effect decrease with 1/E³
- 4) Natural bunch lenght shorter

5) Beam stiffer, single and multi bunch instabilities decrease with 1/E

P. RAIMONDI

DAFNE2

Energy x 2

DAFNE2

Specifications

Upgrade of DA Φ NE from the present energy of 1.02 GeV c.m. up to and above the neutron-antineutron threshold, 2-2.4 GeV c.m., using the existing systems and structures.

Luminosity ~ 10^{32} cm⁻² s⁻¹

Compatibility with present operation at ${f \Phi}$

WHAT CAN BE USED FROM DAΦNE

- DAFNE2 can exploit DAΦNE hardware:
 - vacuum chamber
 - all quads and sexts
 - RF cavity
 - Feedback, vacuum system…
- But needs new:
 - stronger bending dipoles
 - 4 SC quads in IR2

IR2 BETA FUNCTIONS

- $\beta_x = 2.5 m$ and $\beta_y = 2.5 m$, already achieved at DA Φ NE
- FF DFFD FF quad sequence

Superconducting IR Quadrupoles

Requirements

Tunable 510MeV -> 1.2GeV

CESR IR

Solenoid compensation Superimposed skew quad windings

Alghero workshop HE working group Conclusions

Energy upgrade to 1.1 GeV/beam straight forward and at moderate cost

Exploit most of existing hardware

Preliminary design for dipoles with some questions about - current dependence of field quality

- current dependence

Parameters of superconducting I R quadrupoles are well within the range of existing designs

Super DAΦNE

Luminosity x 100

Ideas for Luminosity increase

Some will be tested in near future:

Crab cavities (KEK-B)

Collisions with round beams (VEPP2000)

□ Negative α_C (KEK-B, DA Φ NE)

Others ...

collisions with neutralized beams (four beams) + feedback system
ring against linac
Monochromators
Collisions with large crossing angle: E_{cm}= 2E_{beam}cos(θ_c/2), e.g. θ_c/2 =60°, E_{beam}=1GeV Main guidelines for the design $L > 10^{-34}$ at Φ energy

Powerful damping

Short bunch at IP

Negative momentum compaction

Which kind of collider is possible at Frascati using present infrastructures?

Damping time on magnetic field

Beam Dynamics with $\alpha_c < 0$

- Bunch is shorter with a more regular shape
- Longitudinal beam-beam effects are less dangerous
- Microwave instability threshold is higher (?)
- Sextupoles are not necessary

- It is worthwhile to try a collider operation with a negative momentum compaction factor since this can provide several advantages in beam dynamics
- Simulations indicate that by shifting the working point close to the integers and applying a lattice with the negative momentum compaction we have a possibility to push DAΦNE luminosity to 10³³ cm⁻²s⁻¹ level

M. ZOBOV

Hour-glass effect

Squeezing vertical dimensions is effective only if bunch length is also decreased to the same dimension

e⁺ e⁻ in the 1-2 GeV range: **Physics and Accelerator Prospects**

Strong RF Luminosity M. S. M. Cherrease, (INFN-Ca M. S. Cherrease, (INFN-Ca M. S

R. Baldini (INFN-LNF) S. Bertolucci (Chairman) (INFN-LNF) M. Biagini (INFN-LNF Bottigli (Università Sassari) F. Ferroni (Università Roma1) G. Jeldori (INFN-LNF)

International Advisory Committee

P. Franzini (Università Roma1) owett (CERN) CERN) sev (BINP) R. Petronzio (Università Roma2) D. Rice (Cornell)

A. Gallo, P. Raimondi, M.Zobov

E-mail d2@Inf.infn.it

NEN deali STUDI di SASSARI

Varying bunch length along the ring

Comparison with Numerical Results:

These analytical results have been compared with multi-particle tracking simulations of the bunch longitudinal dynamics in a strong RF focusing configuration. Uniform R_{56} growth and emission rate in the arcs have been assumed in the tracking. The agreement is evident.

WORKING POINT OPTIMIZATION FOR A SUPER Φ-FACTORY DESIGN BASED ON THE STRONG RF FOCUSING

A. Gallo, 25/09/2003 DAFNE2 meeting

The Working Point of a strongly RF focused ring consists in a set of values for the following fundamental parameters:

1	μ	One-turn synchrotron phase advance
2	$rac{oldsymbol{\sigma}_E}{E}$	Energy spread of the equilibrium distribution in the strong RF focusing regime
3	$R_{56}(L) = \alpha_c L$	One-turn normalized path elongation (total R_{56})
4	$\left. \frac{\pmb{\sigma}_E}{E} \right _0$	Energy spread of the equilibrium distribution in the "weak" focusing regime ($\mu <<1$)
5	V_{RF}	RF Voltage
6	λ_{RF}	RF wavelength

to obtain the required bunch length σ_z at the IP.

2. Bunch energy spread in the strong RF focusing regime

The bunch energy spread rapidly grows with the phase advance and its maximum acceptable value is limited by:

- The Φ -resonance width;
- The machine energy acceptance (quantum lifetime)

To avoid Φ production degradation:

 $\sigma_E/E \leq 1.4 \%$

The beam quantum lifetime requires a ring energy acceptance of $\approx 1\%$ at least.

$\sigma_z(IP)$	σ_{E}/E
3 mm	1.2 ‰
2 mm	1.4 ‰
1 mm	1.4 ‰

With ± 10σ_x clearance, ± 9° cone, ±30 mrad angle:
QD1: L= 20 cm, pole radius = 1.5 cm, R_{ext} = 3 cm, pm thickness= 1.5 cm
Small ₹
QF2: L= 20 cm, pole radius = 11 cm, R_{ext} = 16 cm, pm thickness= 1.5 cm,
4 cm space between 2 quads
QD3: L= 20 cm, pole radius = 15 cm , R_{ext} = 63 cm, 25 cm space between 2 quads

10-13 September 2003

Alghero

BIAGINI

Dynamic aperture

First evaluation by E.Levichev, P.Piminov^{*)} BINP, Lavrentiev 13, Novosibirsk 630090, Russia

> ACCELERATICUM computer code [*] Symplectic 6-D tracking for transversely and longitudinally coupled magnetic lattice

[*] Tracking code ACCELERATICUM, VEPP-4M Internal Note, BINP, Novosibirsk, 2003.

Choice of the working point

Adding the longitudinal phase plane:

3D – resonances

Tune footprint in 2D - transverse

Feedback systems First analysis by J.Fox, D. Teitelmann SLAC

GBoard 1.5 GS/sec. processing channel

control technology control processing speed and density Significant advance in the diagnostics. collaboration - useful at PEP-SLAC, KEK, LNF-INFN previously achieved. instability control and beam Next-generation instability Builds on existing program in throughput rate) High-speed beam diagnostics light sources Longitudinal instability Transverse instability control II, KEKB, DAFNE and several 1.5 GS/sec. sampling/ Ain LVTTL control bus LVPECL @ 71.4(107) MHz LVPECL @ 500(750) MHz ADC 16 Demultiplexer 1Mx18 Addr Data 1Mx18 Addr 1Mx18 Addr 1Mx18 Addr 32 32 32 32 18 20 FPGA 3 FPGA 2 FPGA 1 FPGA 0 Addr 1Mx18 Data Addr 1Mx18 Data ddr 1Mx18 ddr 1Mx18 ō õ õ 32 32 3 32 Multiplexer 16 DAC **Bus interface** Aout

DA**P** More with strong RF focusing

As an example we will consider the effect of proposed RF configuration on longitudinal feedback

The proposed design has a much higher gap voltage which results in significantly shorter bunches at the IP and higher synchrotron frequency.

Parameter	Current	Proposed
RF frequency $(f_{\rm rf})$	368.25 MHz	500 MHz
Momentum compaction (α_c)	0.029	-0.171
Circumference (L)	97.69 m	105 m
Revolution frequency $(f_{\rm rev})$	3.069 MHz	2.857 MHz
Harmonic number	120	175
RF voltage $(V_{\rm rf})$	120 kV	10.677 MV
Synchrotron frequency (f_s)	30 kHz	1.31 MHz
Revolutions per synchrotron period	~102	2.18
Bunch length (σ_z)	19 - 38 mm	2.6 - 20.4 mm

Beam lifetime (S.Guiducci)

Touschek lifetime has been calculated with a preliminary set of longitudinal parameters. A further optimization is possible.

Anyway

At $L = 10^{34}$

lifetimes are of the order of 10 minutes

continous injection is needed

Background

High current Short beam lifetime Continuos injection

High rate of particle losses

Dominated by Touschek lost particles IR design together with detector design

Dipole parameters

Ту ре	Α	В	С
Ν	22	22	4
Alfa [rad]	0.6545	0.8528	0.5236
Chord [m]	0.607	0.781	0.489
Sagitta [m]	0.050	0.085	0.032
Mag lenght	0.618	0.805	0.494
Vol Fe [mc]	0.282	0.362	0.227
Vol Cu [mc]	0.04 1	0.047	0.037
Weight Fe [kg]	2222	2859	17 89
Weight Cu [kg]	359	4 10	324
Total Weight [kg]	2581	3269	2113
Power [W]	7234	8260	6537

NI[A]	26350
J[A/mmq]	3.2
Total power [kW]	370

Cost evaluated: 1600 k€

Poisson FEM simulation

Injection system upgrade

The proposed
 transfer lines pass in
 existing controlled
 area

 Additional shielding needed in the area
 between the accumulator and
 DAFNE buildings

Crossing point section schematic layout

SIDE VIEW

Luminosity 10³⁴ set of consistent parameters

MAIN PARAMETERS	
C (m)	105
E (MeV)	510
f _{rf} (MHz)	497
V (MV)	10
$\varepsilon_{x}(\mu rad)$	0.26
$\varepsilon_{y}(\mu rad)$	0.002
$\alpha_{\rm c}$	- 0.165
$\beta_{x}^{*}(m)$	0.5
β_{y}^{*} (mm)	2.0
N / bunch	5 e10
h	180
L /bunch (cm ⁻² sec ⁻¹)	9 10 ³¹
L tot (cm ⁻² sec ⁻¹)	1.4 (1. @Φ) 10 ³⁴

Tests foreseen in collaboration with other machines

Negative alfa tests at KEKB

Ikeda, KEKb

We are considering the possibility of testing the strong RF focusing in PEP2, KEK-B, CESR, ALS, ...

10³³

Optimistic extrapolation of present knowledge and technologies

10³⁴

Very challenging design based on new ideas Proofs of principle and validation needed

10 35

• • • • • • • • • • • • • • • • •

DAFNE status and outlook

Adiabatic changes on DAFNE approaching to an end.

> DAFNE performances expected to reach the original design goals (L= 5×10^{32}), within the next 2 years.

>3-4 years of physics program fully booked with current (or slightly upgraded) detectors.

>After that, only radical changes possible

S. Bertolucci, closing Alghero workshop

Conclusions

Energy X 2 Feasible, reasonable cost and time AND / OR L X 100 Challenging Interesting Worth preliminary design report in collaboration with other Institutes (already begun)

Depends strongly on physics community interest