Status Report on DAFNE

G. Mazzitelli

for the DAFNE team

2002 DAFNE operations summary and plans

- Vacuum conditioning and start-up
- Dear test run commissioning
- Plans and expectations for the upcoming 2002 Kloe run
- BTF commissioning
- Medium-long terms plans
- Conclusions

Vacuum conditioning

- 3 weeks Start up delay because crio and solenoid P.S. problems (Feb-25)
- Conditioning in both rings virtually completed by March-10, except the RF Cavities=>
- Dec-2001 Vacuum Levels in e-RF Cavity almost recovered

Dear Run Commissioning

- Background Optimization
- Orbit Optimization
- Old and New Scrapers Optimization
- Sextupoles Optimization
- Octupoles Optimization

=> achieved >10 times improvement w.r.t. 2001

- Luminosity Optimization
- Luminosity monitors improvements
- Adiabatic Tuning
- Low ?_x

=> achieved > 4 times improvement w.r.t 2001

Present Performance with DEAR

•	Number of bunches per beam	45 + 45
•	Total current per beam (A)	~ 0.7
•	Peak luminosity (cm ⁻² s ⁻¹)	4.6 x10 ³¹
•	Average luminosity (cm ⁻² s ⁻¹)	~ 1.5 x10 ³¹
•	Integrated luminosity per day (pb ⁻¹)	1.1
•	Luminosity lifetime (h)	~ 0.6
٠	Number of fillings per hour	~ 1.7
•	Data acquisition during injection	off
•	With the luminosity collected in Anril	shifts the cantur

 with the luminosity collected in April shifts the capture of kaons in Nitrogen atoms clearly observed

Best 2002 DEAR day

2nd KLOE Physics Workshop, 10-12 June, Otranto

DEAR and **KLOE** luminosity

2nd KLOE Physics Workshop, 10–12 June, Otranto

Dear non-linearities Optimization

Dynamic aperture, Lifetimes and background have been optimized both with sextupoles (about 15%) (left picture) and octupoles (about 15%). Octupoles have been found also useful to improve the lifetime in collision (~10%), compensating the strong beam-beam non linearities.

POSIT	RONS						
β×	βγ	η×	Vx	Vy	SEXT	OLD	NEW
2.973	7.491	-0.036	0.369	0.104	SXPPS201	0.	0.
5.183	1.362	0.921	0.510	0.236	SXPPS202	26.2	26.2
1.427	6.102	1.718	0.772	0.707	SXPPS203	84.	74.
9.991	9.433	0.341	1.026	0.767	SXPPS204	0.	0.
10.822	8.001	-0.351	1.437	1.431	SXPPL201	0.	0.
1.231	3.743	1.114	1.572	1.515	SXPPL202	45.	72.5
10.375	1.134	2.686	1.922	1.977	SXPPL203	30.	10.*
1.314	7.685	0.889	2.034	2.195	SXPPL204	0.	0.
1.260	7.204	0.878	3.122	2.511	SXPPL101	15.	0.
10.223	1.203	2.681	3.239	2.728	SXPPL102	26.7	30.*
0.998	4.073	1.158	3.570	3.191	SXPPL103	94.	72.5
7.912	6.116	-0.372	3.725	3.299	SXPPL104	0.	0.
8.664	5.215	0.346	4.12	4.419	SXPPS101	0.	0.
1.315	6.146	1.759	4.406	4.507	SXPPS102	79.	69.
5.349	1.321	0.939	4.643	4.977	SXPPS103	22.	22.

*experimentally found that these, unbalanced, have a better effect on τ .

ELECT	RONS						
Bx	βγ	η×	Vx	Vy	SEXT	OLD	NEW
2.640	7.657	-0.063	0.353	0.090	SXPES201	0.	0.
5.537	1.347	0.91	0.497	0.224	SXPES202	38.8	30.
1.328	5.980	1.739	0.746	0.695	SXPES203	88.	83.
10.836	9.660	0.350	1.013	0.755	SXPES204	23.	0.
10.560	8.535	-0.390	1.426	1.409	SXPEL201	43.4	0.
1.367	3.758	1.116	1.555	1.490	SXPEL202	76.	71.5
9.925	1.166	2.729	1.910	1.952	SXPEL203	21.6	20.
1.434	7.493	0.891	2.020	2.176	SXPEL204	0.	0.
1.381	7.039	0.867	3.100	2.482	SXPEL101	0.	0.
9.842	1.233	2.615	3.213	2.705	SXPEL102	22.6	20.
1.106	4.079	1.161	3.552	3.169	SXPEL103	77.	71.5
7.755	6.567	-0.316	3.699	3.272	SXPEL104	0.	0.
9.460	5.427	0.315	4.105	4.384	SXPES101	0.	0.
1.242	5.976	1.739	4.394	4.473	SXPES102	67.	83.
5.774	1.300	0.967	4.619	4.942	SXPES103	23.	30.

Reduction of non-linearities with Octupoles

2 Chrom_X_14/3/02 SXP OFF

2nd KLOE Physics Workshop, 10-12 June, Otranto

Background optimization with scrapers¹¹

Total Scrapers	Colliding Beams	Single beam	KLOE Scraper for KLOE Background
efficiencies	(I b=12.5mA)		is more efficient with other scrapers in (same for DEAR
e+	~2.5 (Kloe) ~4 (Dear)	Same	
			case)
e-	~6 (Kloe)	Same	
	~4 (Dear)		

Low ?x in Dear

?x=4.4m in December ?x=1.7m in April

Touschek particles trajectories at DEAR I R

calculated background With last December 2001 optics calculated background with April 2002 optics (low-?_x at IP and at first quad-F)

2nd KLOE Physics Workshop, 10–12 June, Otranto

13

Background reduction in the DEAR Kaon Monitor

140

120

After machine and collimation optimization ->

2nd KLOE Physics Workshop, 10–12 June, Otranto

5657

387.2

56.11

Entries

Mean

RMS

90 bunches collisions in DEAR

- With Low betax in Dear has been possible to successfully collide with 90 bunches/mod1 in DEAR
- Higher current: up to 1.3 Amps
- Longer lifetimes: less single bunch currents
- Less background

In the next DEAR run we should routinely collide with 90 bunches

90 bunches stable beam

Tune shift with $?_x = 4.4$ m

Dear Tune shifts

- Tune shift increases like 1/sqrt(?x)
- Tune shift flat above
 ~7mAmps single bunch

=>

No beam limit in the vertical plane, horizontal blow-up could be reduced with better machine-tunes working points

Tune shift with ?_x=1.7m

Kloe Run Commissioning

- Background Optimization
- Orbit Optimization
- Old and New Scrapers Optimization
- Sextupoles Optimization
- Octupoles Optimization
- Increase Dynamic aperture with better ?s on Sexts. (in progress)
- Increase lifetimes with larger ?s on Wigglers
- Luminosity Optimization
- Adiabatic Tuning
- Different Working Point for e-
- Low $?_{y}$
- Low ?_x
- Decrease horizontal emittance

(in progress anytime) (done 1st pass)

(done 1st pass)

(in progress)

(done 1st-2st pass)

(done 1st-2st pass)

Present Performance with KLOE

- Number of bunches per beam
- Total current per beam (A)
- Peak luminosity (cm⁻²s⁻¹)
- Average luminosity (cm⁻²s⁻¹)
- Integrated luminosity per day (pb⁻¹)
- Luminosity lifetime (h)
- Number of fillings per hour
- Data acquisition during injection

- 45+45 -> **47+47**
 - ~ 0.8
- 4.5 -> 4.8x10³¹
- ~ 3.0 -> 3.5x10³¹
- 2.5 -> 2.9
- ~ 0.3 -> <mark>0.4</mark>

~ 4

on

19

2nd KLOE Physics Workshop, 10-12 June, Otranto

June: Luminosity~4.0e31 ECAL Background~30-40KHz Lowest background in drift chamber

2001-2002 Amp*h and luminosity/uptime history

2nd KLOE Physics Workshop, 10-12 June, Otranto

2001-2002 Pseudo Tune-shifts and Specific-luminosity

Orbit Optimization in KLOE

An improved steering algorithm to simultaneously minimize orbit and correctors let us to reach optimal orbit and corrector settings. Consequently the vertical dispersion is one of the smallest ever reached in a storage ring: << 1cm

?_y~??m, ?_y~10⁻³?x

Horizontal (up) and vertical (down) dispersion in the e- Ring

KLOE Tune shifts

 Tune shift almost linear up to ~15mAmps single bunch

=>

- No beam limit in the vertical and horizontal plane
- Machine-tunes working points almost ideal

e-: Q_x~0.112 Q_y~0.145

- e+: Q_x~0.151 Q_y~0.215
- Possible to decrease Betas and increase currents

Background Expectations for the Kloe Run

Supposing Dear-like Results: Background multiplicative improvements: 70-80 % from better orbits (70% now) 50-70 % from new scrapers (80% 70% now) 80-90 % from sextupoles opts. (70% 60% now) 70-80 % from octupoles (new) (100% 90% now) 40-80 % from Lattice changes (100% now)
overall between 2 (>2.5 and 3.5 now) and 12 reduction

(Dear obtained reduction: >10) and 12 reduction

Luminosity expectation for the Kloe Run

Luminosity multiplicative improvements:

 1.0 - 1.2 from Different e+ working point
 1.1 - 1.2 from longer lifetimes (sexts+octs) (in progress)
 1.0 - 1.2 from lower ?_y
 1.0 - 2.0 from smaller emittances

 1.1 - 3.4 improvement (L~5-16e31)

 (Dear obtained improvement: 4, L~4.6e31)

1.2 - 1.7 from lower ?x(next year)1.0 - 1.5 from 94 bunches operation

Present limits to ring Currents

 Both e+/e- currents limited to ~0.85 Amps in normal running condition

At higher currents: Background too high Lifetimes too short

At the present, the e- RF cavity trips at about 0.9Amps in the 45bunches/mod2 mode. No trips seen in the 90bunches/mod1 mode => Higher order mode from the beam...

e- RF cavity problem

- e⁻ RF cavity refurbished in the January stop because sparking at the tuner
- At same time changed the beta for both cavity by rotating the coupling loops
- The cavity trips because a trapped high order mode

2nd KLOE Physics Workshop, 10–12 June, Otranto

- Electrons energy 50-750 MeV
- Repetition rate up to 50 Hz
- Pulse Duration 10 ns
- Maximum current/pulse 500 mA
- Up to 10³ allowed electrons/sec
- 100 m² Experimental Hall

2nd KLOE Physics Workshop, 10-12 June, Otranto

BTF HALL

Commissioning

- The 1st of February we started the commissioning of the line
- The 2nd of February we obtain the first single electron distribution

Flag TB002

2nd KLOE Physics Workshop, 10-12 June, Otranto

DA? NE Beam Test Facility

The **DA? NE** *Beam Test Facility* is a beam transfer line designed in order to optimize the ⁵⁰⁰ operation mode in which single electrons are stochastically produced for detector calibration ⁴⁰⁰ purpose.

The facility has been successfully commissioned and is now in the optimization phase (efficient transportation, work in parasitic mode, etc)

- $50 \div 750$ MeV electrons
- pulse duration: 10 ns
- 30% efficiency for single electron production already achieved
- 10³ electrons/s allowed by radiation protection

2 mA Linac pulses have been attenuated by means of a 1.7 X_0 copper target (2.0 or 2.3 X_0 depths can also be chosen).

2002 time schedule

- 2 months for Dear => 40-60 pb⁻¹
- 4 months for Kloe => 250-500 pb⁻¹
- 2 months for Finuda and Kloe N.I.R. installation

2002 goals

- Deliver > 300 pb⁻¹ to KLOE
- Further improve luminosity performance and signal-to-background ratio in order to observe and measure the properties of kaonic hydrogen in DEAR (~ 50 pb⁻¹)
- During a long shutdown (from November 2002 to January 2003) install new interaction regions for KLOE and for a new magnetic detector (FI.NU.DA., aimed at the study of hypernuclear physics on IP2), with modified optic and supports in order to decrease the IP beta-functions, optimise background rejection and provide variable quadrupole rotation to operate at different magnetic fields (from 0 to maximum) in the solenoids.

KLOE New Interaction Region ³⁵

2nd KLOE Physics Workshop, 10-12 June, Otranto

Conclusions

DAFNE understanding steadily improving DAFNE limitations slowly overcome DAFNE performances steadily improving

2002 Goals very tight but still possible

Expectations for a new DEAR Run

- Background multiplicative improvements: 70-90 % from better shielding 50-90 % from further optic improvements 70-90 % from 90 bunches operation => between 1.3 and 4 reduction overall
- Luminosity multiplicative improvements:
 - 1.1 1.5 from different e-/e+ working point
 - 1.2 1.5 from 90 bunches operation
 - => 1.3 2.3 improvement (L~5-10e31) overall