K_L , the sacred decay of neutral kaons *Evasive signal* : $1 \circ + nothing...$ **Full kinematical** reconstruction would Huge physics backgrounds : ⁰ ⁰ decay greatly help b.r. 10⁸ larger *Faint signal* : easily killed by accidentals A true nightmare for hadron machines A non trivial problem *Very small b.r.* : ~ $3 \ 10^{-11}$ in the SM for a ϕ factory

K_L ^O at a -factory

Case discussed in:

F. Bossi, G. Colangelo, G. Isidori, EPJ C6 (1999), 109-119

based on a toy Monte Carlo, with KLOE simplified geometry and schematic *but realistic* detection efficiencies

Observation of K_S decay fixes K_L decay kinematics

In K_L c.m. :

$$E_{\pi}^{*} = M_{K}^{2} = \frac{0}{0} 0$$

 $E_{\pi}^{*} = 135, 270 \text{ MeV signal}$

Resolution a critical issue!

Dead Zones (pipe hole, quads...) At a collider dead zones are mostly <u>backwards</u> wrt to K_L flight direction.

Due to Lorenz boost, lost photons are *low energy* ones

For the same reason a cut on R_{dec} (2 events) can help

BR1 : b.r. providing 1 event at the given luminosity
SES : b.r. for which N(signal) = N(bckg)

	Energy cut (GeV)	R _{min} (cm)	c(%)	SES	BR1
	$E_{\pi^0}^* < 0.20$	100	1.1	6×10^{-9}	6×10^{-9}
$\int \mathcal{L} = 10^{40} \mathrm{cm}^{-2}$	$E_{\rm tot} < 0.22$ $E_{\rm tot} < 0.22$	90	2.8 3.1	1×10^{-9} 3×10^{-9}	2×10^{-9} 2×10^{-9}
< 6%.	$E_{\rm tot} < 0.21$	90	2.3	$5 imes 10^{-10}$	$3 imes 10^{-9}$
ldeal	$E_{\pi^0}^* < 0.22$	100	2.8	< 10 ⁻¹⁰	2×10^{-10}
detector	$E_{\rm tot} < 0.24$	100	5.7	1×10^{-10}	1×10^{-10}

Efficiency break-up

1) <u>Tagging</u>: 60% if K_S + -used (b.r. 67%) 2) <u>Fiducial volume</u>: 15% if $100 < R_{FV}$ (cm) < 180 27% if $50 < R_{FV}$ (cm) < 180 37% if $50 < R_{FV}$ (cm) < 250

3) <u>Energy cuts:</u> 10% – 30% – 50% realistic optimistic very optimistic our choice

not KLOE

N vertex

N vertex

$K_{\rm S}$ semileptonic decay charge asymmetry

$$A_{S,L} = \frac{+_{S,L} - -_{S,L}}{+_{S,L} + -_{S,L}}$$

$$A_{S} = 2Re \quad _{K} + 2Re \quad _{K} + 2Re \quad _{K} + 2Re \quad _{K} - 2Re \quad _{$$

Re $_{\rm K} = (2.9 \pm 2.7) \ 10^{-4}$

CPLEAR Phys Lett **B444** 52 (1998)

(thanks to T. Spadaro)

Detection efficiencies for year 2001 data

Might improve if a lower B is used

	Average	e ^{+ -}	e^{-+}
ε (fiducial cuts)	(31.00±0.07)%	(30.9±0.1)%	(31.0±0.1)%
t. ç .a.)	(92.4⊕.1)%	(92.3⊕.2£).1)%	(92.5⊕.2£0.1)%
t _o ð	(99.74±0.03)%	(99.74±0.04)%	(99.74±0.04)%
tr (gger)	(93.7⊕.1)%	(93.80.2)%	(93.6⊕.2)%
t.(0.f.)	(79.9⊕.2)%	(78.7⊕.3)%	(81.1£.3)%
ϵ (t.c.a.•t ₀ • trig•t.o.f.)	(69.0±0.2)%	(68.0±0.3)%	(70.0±0.3)%
ε(overall)	(21.4±0.4)%	(21.0±0.5)%	(21.7±0.5)%

Tagging efficiency not included (now 30%)

(thanks to T. Spadaro)

 $K_{\rm S}$ semileptonic decay charge asymmetry

Given the present efficiency:

In order to test if A_S is consistent with 2Re $_K$, need 2 fb⁻¹ In order to measure A_S with O(30%) significance, need 20 fb⁻¹ In order to improve limits on $_K = (A_S - A_L)/4$, need 200 fb⁻¹ + precise measurement of A_L^e from KTeV

 $A_L^e = (3322 \pm 58_{stat} \pm 47_{syst}) \ 10^{-6}$ KTeV Phys Rev Lett 88 (2002)

(thanks to T. Spadaro)

$K_{\rm S}$ rare decays

Some rare K_S decay can be observed for the first time or its knowledge can be considerably improved

 $K_{\rm S}$ + - 0 b.r. ~10⁻⁷ presently known to ~ 30%

 $K_{\rm S}$ 3 ⁰ purely CPV b.r. ~10⁻⁹ not yet observed

Main experimental issue: rejection of $K_S = 2^{-0} + 2$ accidentals

Preliminary study in KLOE: feasible with ~ 5-10%

a few events observed with 100 fb⁻¹