CORRECTION OF THE OCTUPOLE TERM INTRODUCED BY THE WIGGLER MAGNET

> Claudio Sanelli Miro Andrea Preger

Preliminary considerations

- Measurements with beam on the wiggler have shown the presence of an octupole-like term coming from the combination of a decapole term in the wiggler field with the wiggling trajectory of the beam
- The tune shift as a function of beam position in the wiggler has been fitted in the machine model with a single octupolar thin lens at the wiggler center and with 5 thin lenses, one in each pole
- The intensity of the octupole lens, according to the different models, in MAD units is
- $500 \text{ m}^{-3} < \text{K}_{\text{MAD}} < 1000 \text{ m}^{-3}$

First attempt: Wiggler end plate modification

Wiggler 3D simulation

Longitudinal field profile (3D simulation)

y (em)

Longitudinal field profile comparison with and without end plate

2 10 1,5 10 Bz ly) (Gauss) Bz (y) (Gauss | No Clamp 1 10 saaa 5 Ĭ đ -----É -5000 -1 10 -1,5 10 -2.10 40 10 20 30 sa **9**0 O.

Bz(y) with and without end plate comparison

y (em)

Naive approach to endplate profile shaping

- Assume field inversely proportional to endplate gap g:
- $(\mathbf{B}_{c} + \mathbf{h}\mathbf{x}^{3})^{*}\mathbf{g} = \mathbf{const} = \mathbf{B}_{c}^{*}\mathbf{g}$
- Assume endplate contribution to the field from magnetic calculations B_c ≈ 0.18 T
- Add linear term in the field to avoid excessive reduction of the gap:
- $(\mathbf{B}_{c} + \mathbf{k}\mathbf{x} + \mathbf{h}\mathbf{x}^{3})^{*}\mathbf{g} = \mathbf{const} = \mathbf{B}_{c}^{*}\mathbf{g}$
- Truncate gap oscillation to constant to avoid excessive reduction of the gap
- Run magnetic calculation to find the real field

End plate 2D simulation

Transverse field profile under the end plate – no shaping

End plate shaping (2 D simulation)

Transverse field profile under the end plate

Field profile modification

1st Attempt: Conclusions

- Bad magnetic field profile
- Insufficient octupole term correction

Second attempt: Substitution of the end plate with PM blocks

Longitudinal field profile (3 D simulation)

y (cm)

Longitudinal field profile comparison with and without end plate

PM Block geometry (2 D simulation)

Transverse magnetic field profile

Magnetic field near the beam axis

PM Blocks – 3 D geometry

PM Blocks – 3 D solution area

PM Blocks – 3 D solution

Transverse magnetic field profile

x(cm)

Longitudinal magnetic field profile

ypm)

2 D – 3 D comparison Transverse field profile

 $\times [em]$

$Y = MO + M1^*x + M8^*x^8 + M9^*x^9$		
MO	2.0254e-07	
M1	-0.12356	
M2	-0.00010666	
М3	2343.8	
R	1	

$Y = MO + M1^*x + M8^*x^8 + M9^*x^9$			
MO	-7.9512e-18		
M1	0.52448		
M2	1.0372e-14		
МЗ	1239.5		
R	0.9985		

2nd Attempt: Conclusions

- Acceptable field quality but very critical with respect to magnet position and size
- Insufficient octupole term correction

Third attempt:

Octupole correction added into ANSALDO Large Sextupole by means of a wired, air cooled, coil

Sextupole 2D simulation

L.S. Symmetric Sextupole Field Profile

Sextupole + Octupole

Sextupole + Octupole Icorr = 600 A-turns

Sextupole + Octupole correction Bz(x, Icorr)

x (m)

$Y = MO + M1^*x + M8^*x^8 + M9^*x^9$		
MO	-0.0013124	
M1	-0.42625	
M2	-97.241	
M3	-111	
R	0.9999	

3rd Attempt: Conclusions

- Reasonably good magnetic field profile
- Insufficient octupole term correction

Fourth attempt:

Octupole correction added into ANSALDO Large Sextupole by means of a water cooled, coil

W.C. coil front view

Sextupole + Octupole 2D simulation

Sextupole + Octupole Icorr=3296A*t – Field profile

Sextupole used as Octupole Icorr = 3296 A*t

Sextupole as Octupole Magnetic field profile

Sextupole as Octupole Magnetic field profile

Sextupole as Octupole K_{MAD} 330 m⁻³

Sextupole as Octupole No quadrupole

Coil data (1st option)

•	Coil cross section	mm*mm	50 * 14
•	Conductor: Cu	mm*mm	5.6*5.6
•	Cooling hole dia.	mm	3.6
•	Turns per coil		16
•	Coils per Sextupole		4
•	Maximum current	А	206
•	Current density	A/mm ²	10.14
•	Magnet voltage	V	17.32
•	Magnet power	W	3568
•	Hydr. Circ. per magnet		4
•	Water velocity	m/s	1.05
•	Water flow per magnet	m^{3}/s	4.3E-5
•	Temperature increase	°C	20
•	Pressure drop	MPa	0.143

Coil data (2nd option)

•	Coil cross section	mm*mm	44 * 14
•	Conductor: Cu	mm*mm	5.6*5.6
•	Cooling hole dia.	mm	3.6
•	Turns per coil		14
•	Coils per Sextupole		4
•	Maximum current	А	235.4
•	Current density	A/mm ²	11.58
•	Magnet voltage	V	18.21
•	Magnet power	W	4288
•	Hydr. Circ. per magnet		4
•	Water velocity	m/s	1.26
•	Water flow per magnet	m^3/s	5.2E-5
•	Temperature increase	°C	20
•	Pressure drop	MPa	0.18

However, before going ahead:

- Systematic check of the available space between vacuum chamber-sextupole
- Mechanical coil design (electric terminals, hydraulic spigots, coil supports, etc.)
- Mechanical 3D check to verify coil insertion without sextant splitting
- Preliminary industry check

4th Attempt: Conclusions

- Good magnetic field profile
- Quadrupole gradient of about 2.3 T/m to be corrected
- Reasonably good technical solution

POSSIBLE SOLUTION