DAΦNE IRs commissioning and operation

C. Biscari LNF, INFN

Beijing, 12-16 January 2004

Run
Commiss
Installed-standby

1999 2000 2001 2002 2003 2004 **KLOE** 1st IP DEAR 2nd IP **FINUDA** 2nd IP

$DA\Phi NE$ experiments

3 experiments

- Time to install-disinstall
- Time to commission experiment and new configuration of the collider
- Loss in both peak and integrated luminosity

Single bunch luminosity steps

- Much lower coupling than design to counteract beam-beam blow-up (factor 3-4)
- Betas* lower than design (factor 2)
- Emittance lower than design (factor 1.5-2)
- Separation at 2nd IP, detuning when possible
- Working point choice (asymmetric)
- Continuos non linear dynamics optimisation

Total luminosity steps

- Successive Instability threshold increase
- Feedback systems continous tune-up
- Background minimization (scrapers, optics, dynamic aperture)
- Increase of crossing angle for increasing #bunches
- Continuos non linear dynamics optimisation

Beam-beam history (symplified)

Crossing angle and parasitic crossings

	design	Day-1	DEAR in	DEAR fin	KLOE I	KLOE II	FINUDA
σ _L (cm)	3	1.5	1.5	1.5	2.0	2.	1.5
σ _x (cm)	0.21	0.21	0.19	0.11	0.19	0.15	0.12
heta (mrad)	10-15	10-15	11-16	13-20	10-15	12-18	11-16
Θ	.1421	.0711	.0913	.1827	.1116	.1624	.1420
Ν	120	1	50	100	50	100	100
1 st pc (m)	0.42	-	0.84	0.42	0.84	0.42	0.42
#σ @1 st pc	4-6	-	10-15	10-15	10-15	9-14	10-15

Piwinski angle: $\Theta = \theta \sigma_{l} / \sigma_{x}$ (θ = half crossing angle)

Luminometer

- Luminosity measurements are performed by detecting Single Bremsstrahlung at the two interaction points.
- i) capability of performing very fast measurements to allow machine parameters tuning in real time,
- ii) measurement stability with respect to variations of the beam position and angle at the IP
- iii) no interference with the experiments to ensure independent luminosity measurements during the data taking and during the initial phase of the machine commissioning with no experiment installed in the two IRs.

Luminometer position

IP

Beam-beam scans for Σ^* measurements

Move one beam vertically or horizontally with IR closed bump Multibunch, Very low current per bunch (no beam-beam effects)

Example of vertical Σ^{\star}

Beam-beam scans for waist position measurement and fixing

$$\Sigma^* = \sqrt{\sigma_+^2 + \sigma_-^2} = \varepsilon \sqrt{\kappa_+ \beta_+ + \kappa_- \beta_-}$$

Coupling correction

NORMAL MODES FORMALISM (sagan, rubin)

The linear motion in the transverse plane can always be described in two independent planes, the normal planes (a,b) The 4x4 one-turn transport matrix **T** in the laboratory system is related to the normal planes via:

$$\mathbf{T} = \begin{pmatrix} \mathbf{M} & \mathbf{m} \\ \mathbf{n} & \mathbf{N} \end{pmatrix} = \mathbf{V}\mathbf{U}\mathbf{V}^{-1}$$

(m=n=0 for a fully uncoupled point in the ring) **U** is the normal modes one-turn transport matrix:

$$\mathbf{U} = \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{pmatrix} \qquad \mathbf{V} = \begin{pmatrix} \mathbf{\gamma} \mathbf{I} & \mathbf{C} \\ -\mathbf{C}^+ & \mathbf{\gamma} \mathbf{I} \end{pmatrix}$$

(+ = symplectic conjugate)

 γ is a function of *s* along the ring:

$$\gamma^2 + \|\mathbf{C}\| = 1$$

$$\gamma = \sqrt{\frac{1}{2} + \frac{1}{2}} \sqrt{\frac{(Tr[\mathbf{M} - \mathbf{N}])^2}{(Tr[M - N])^2 + 4\|\mathbf{H}\|}}$$

 $\mathbf{H} \equiv \mathbf{m} + \mathbf{n}^+$

$$\mathbf{C} = \frac{-\mathbf{H}\operatorname{sgn}(Tr[\mathbf{M} - \mathbf{N}])}{\gamma\sqrt{(Tr[\mathbf{M} - \mathbf{N}])^2 + 4\|\mathbf{H}\|}}$$

Normal planesLaboratory frame $\mathbf{a} = (a, a', b, b')$ \Leftrightarrow $\mathbf{x} = (x, x' y, y')$

related by

$$\mathbf{a} = \mathbf{V}^{-1}\mathbf{x}$$

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix} = \begin{pmatrix} \gamma & 0 & C_{11} & C_{12} \\ 0 & \gamma & C_{21} & C_{22} \\ -C_{22} & C_{12} & \gamma & 0 \\ C_{21} & -C_{11} & 0 & \gamma \end{pmatrix} \begin{pmatrix} a \\ a' \\ b \\ b' \end{pmatrix}$$

The ratio κ is a characteristic of the ring:

$$\kappa = \frac{\varepsilon_b}{\varepsilon_a}$$

 $\sigma^2 = \sigma_a^2 + \sigma_b^2$

The dimensions in the real space (x,y) are given by the quadratic contribution of the two modes:

$$\begin{aligned} \sigma_{x,a} &= \gamma \sqrt{\varepsilon_a \beta_a} \\ \sigma_{x,b} &= \sqrt{\varepsilon_b} \sqrt{\beta_b C_{11}^2 - 2\alpha_b C_{12} C_{11} + \gamma_b C_{12}^2} \\ \sigma_{y,b} &= \gamma \sqrt{\varepsilon_b \beta_b} \\ \sigma_{y,a} &= \sqrt{\varepsilon_a} \sqrt{\beta_a C_{22}^2 + 2\alpha_a C_{12} C_{22} + \gamma_a C_{12}^2} \end{aligned}$$

$$\theta_a = C_{22} + \frac{\alpha_a}{\beta_a} C_{12}$$

Angle between the laboratory frame and the normal modes axis

$$\theta_b = C_{11} - \frac{\alpha_b}{\beta_b} C_{12}$$

Uncoupled motion: Mode a = h Mode b = v

Coupled motion C12 = 0 Mode a projection = line Ellipse area = uncoupled case

Coupled motion C12 ≠ 0 Mode a projection = ellipse Ellipse area > uncoupled

 any not locally compensated coupling source produces: LINEARLY along the ring Tilt of 1st mode • $C_{12}(s)$ • + QUADRATICALLY

transfer of emittance in the 2nd mode

TRANSVERSE PLANE (X,Y) AROUND THE IP: $\kappa = 1\%$ (simulations)

Coupling correction by tuning IR solenoidal field

Detuned Lattice, Coupling Correction

- R is the beam aspect ratio as measured at the SLM
- α is the measured amount of Horizontal oscillation transferred to the Vertical plane

 $\alpha \rightarrow 0$ means no coupling !

κ < 0.2%

After 2003 shutdown

- Rotation of both IRs quads free
- Possibility of correcting coupling perfectly

but

- Possibility of creating unwanted coupling easily:
- Need of new correction system

Coupling Correction with low-beta quads rotations by RM fitting*

- Response Matrix
- Used for c.o. correction (SVD method)

* Catia Milardi et al. :"Coupling correction at DA Φ NE by low- β quadrupoles rotation", to be published

For c.o. correction is model independent

RM: measured and modelled (MAD): good agreement after steering calibration

Response in one monitor to horizontal excitation of all steerings α in all the monitors along the ring Related to C_{22} term of coupling matrix

Depend on coupling sources

Measured with all possible coupling sources off (skews, sext, critical steerings) Fitted through the model with 8 low-beta quad rotations: RM⁺, RM⁻, together $\delta\theta$ (°) = -1, -1.2, 0.9, 1.4, -1.3, -0.1, -0.7, -0.4

From here on the variation in the quadrupole rotation are below the mechanical resolution of the system

Coupling hystory

Design			1%	1%
Day-one	1998	No solenoids	Steering and skew quads	0.6 %
KLOE+	2001	One solenoid	+	0.4 %
lowbeta@2 nd IP			Tuning solenoids	
KLOE +	2002	One solenoid	+	0.2 %
Detuned 2 nd IP			Minimize kicks	
KLOE+FINUDA	2003	F solenoid on	+	0.4 %
		K solenoid off	RM matrix fitting	

1% coupling produces beam-beam blowup at relatively low currents

Operation at high currents

- Highest currents:
- KLOE : I+ 1.1 A, I- 0.8 A 50 bunches
- DEAR : I+ 1.0 A, I-1.3 A 100 bunches

- No problems found in technological IR aspects
- Good vacuum after some tens of Ah

Bellows with mini bellows Between IR and arcs

After 4 years of operation good

After 4 years of operation bad

$DA\Phi NE$ peak luminosity 2000-2003

luminosity (cm⁻²s⁻¹)