DA\PhiNE Interaction Regions

C. Biscari LNF, INFN

Beijing, January 2004

10.0

DAONE layout

 TR_1

IR characteristics:

Symmetry (energy, geometry) Length – 10m Common vacuum chamber Tunable Crossing angle Off-axis trajectory in low-β quads and solenoids

IR2

e

with KLOE

DIVISIONE ACCELERATORI

Servizio Ingegneria Meccanica

	Run
DAΦNE experiments	Commiss
	Installed-standby

	1999	2000	2001	2002	2003	2004
KLOE						
1 st IP						
DEAR						
2 nd IP						
FINUDA						
2 nd IP						

From design considerations*

To work with **different IR configurations** an approach defined *transparency* has been adopted in the ring design: the structure of the regular lattice, the **arcs**, remains as much as possible unchanged whatever is the experiment or the magnetic structure in the two IRs because the **IR designs have almost the same transfer matrix and are easily interchangeable**. Almost the same phase advance between sextupoles is kept in all the different lattices, in order to have similar sextupole configurations and dynamic apertures even with different chromaticities.

In all the IRs there is the possibility to create a vertical orbit bump and separate the two beams. When only one experiment is running, the beams can be separated at the other IP to optimize the luminosity.

• **REVIEW OF DAPNE LATTICES**

M.E. Biagini, C. Biscari, S. Guiducci, J. Lu, M.R. Masullo, G. Vignola DAΦNE TECHNICAL Note: L-9, October 12, 1993

Design single bunch luminosity and tune shifts

$$\xi_{x} = \frac{r_{e}}{2\pi\gamma} \frac{N\beta_{x}}{\sigma_{x}(\sigma_{x} + \sigma_{y})} \approx \frac{r_{e}}{2\pi\gamma} \frac{N\beta_{x}}{\sigma_{x}^{2}} = \frac{r_{e}}{2\pi\gamma} \frac{N}{\varepsilon_{x}}$$
$$\xi_{y} = \frac{r_{e}}{2\pi\gamma} \frac{N\beta_{y}}{\sigma_{y}(\sigma_{x} + \sigma_{y})} \approx \frac{r_{e}}{2\pi\gamma} \frac{N\beta_{y}}{\sigma_{x}\sigma_{y}}$$

If:
$$\kappa = \frac{\varepsilon_y}{\varepsilon_x} = \frac{\beta_y}{\beta_x} = \frac{\sigma_y}{\sigma_x}$$

Then:
$$\xi_x = \xi_y$$

	H	V
ε (mm mrad)	1	0.01
β* (m)	4.5	0.045
σ (mm)	2.1	0.021
ξ (N = 8.9 10 ¹⁰)	0.04	0.04

Tunable crossing angle

IR configurations

No solenoids

- Day-one
- DEAR
- Detuned

With solenoids

FINUDA
KLOE I
KLOE II

No solenoid IRs

DEAR experiment

Target around the vacuum chamber for exothic athoms research: No effect on the beam optics

y (m), XMIN, XMAX

Table name = TWISS

Beam trajectories

DEAR-2

θ(mrad): 13.0 to 19.6 Run with 100 bunches With weaker parasitic crossings effects

DETUNED θ (mrad): 13.8 to 20.8

Advantages: Only 1 low-beta (lower chromaticity) Beam vertical separation = bump Does not introduce coupling

Beam trajectories

y (m), XMIN, XMAX

IRs with solenoids

Solenoid compensation

Quads tilted by $\frac{1}{2B\rho}\int_{ID}^{s_q}Bds + \delta\theta_q$

Exact coupling cancellation

Solenoid: rotation and focusing (H,V)

$$\mathbf{S} = \begin{pmatrix} \cos K_s L_s & \frac{\sin K_s L_s}{K_s} \\ -K_s \sin K_s L_s & \cos K_s L_s \end{pmatrix} R(\theta_s)$$

 $K_s = \frac{B_s}{B\rho}$ $\theta_s = \frac{1}{2B\rho} \int B_s ds$

$$K_s L_s = 2\theta_s$$

 θ_s depends only on the integral of Bs, the focusing strength, once fixed θ_s , is inversely proportional to Ls. The focusing properties of the compensator are relevant, while those of the detector with the same absolute value of θ_s are negligible

Two permanent + two normal quads

Beam trajectories

Crossing angle between 10.7 – 16.1 mrad

FINUDA IR vacuum chamber and pm quads

FINUDA IR Vacuum chamber

Finuda I.R. installation (spring 03)

KLOE-I (run until 2002)

KLOE IR low beta quads

	1 st F	2 nd F	D
G(T/m)	6.0	5.3	10.3
GL (T)	1.2	1.4	3.6

KLOE-II (to be commissioned this year)

Beam trajectories inside IR

Crossing angle between 12.1 – 18.1 mrad

500 µ Albemet

200

Kloe I - I.R. removal (spring 03)

Kloe I.R. installation hardware

KLOE IR

Background

- Dominated by Touschek losses
- Depending on dynamic aperture, coupling, beam lifetime, optics

Intercepted with scrapers

Vertical scraper

horizontal scraper

	Run
DAΦNE experiments	Commiss
	Installed-standby

	1999	2000	2001	2002	2003	2004
KLOE						
1 st IP						
DEAR						
2 nd IP						
FINUDA						
2 nd IP						

$DA\Phi NE$ peak luminosity 2000-2003

luminosity (cm⁻²s⁻¹)