Strong-strong beam-beam simulation

Alexander Valishev

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Strong-strong beam-beam simulation

- 1. Beam-beam force: Particle-In-Cell. Field calculated via the 2D Poisson equation^a. Typically 10^5 macro-particles per bunch, 128×128 transverse coordinate mesh.
- 2. Arc transformation of the 6D particle phase-space coordinates, includes sextupoles.
- 3. Radiation damping and quantum excitation applied once per turn.

^aK. Ohmi, Phys. Rev. E **62**, 7287 (2000)

Beam-beam force calculation: model

Macroparticles/bunch $N_p = 50000$, transverse mesh $N_m \times N_m$, $N_m = 128$

Simulation for round beam without sextupoles: 1

Beam size and \sqrt{L} vs. the beam-beam parameter. VEPP-2000 E = 900 MeV

Simulation for round beam without sextupoles: 2

Transverse density distribution of the electron beam at $\xi = 0.17$

- 1. Linear mapping with matrix M_i
- 2. Thin sextupole S_i

Phase portrait of the single particle tracking

Simulation of the beam emittance excitation: 1

Simulation of the beam envelope in collision includes two effects:

- Deformation of the optical functions due to additional focusing (dynamic beta).
- Change of the beam emittance.

Simulation of the beam emittance excitation: 2

Coordinate transformation:

$$X = \lambda X_0 + \sqrt{(1 - \lambda^2)\epsilon} M_d \hat{F} ,$$

X, X_0 are normal mode 2-vectors, $\lambda = e^{-\delta}$, \hat{F} is random Gaussian 2-vector.

$$M_d = \begin{pmatrix} a+d & b \\ b & a-d \end{pmatrix}, \quad \tilde{Q} = 2\delta\epsilon \begin{pmatrix} 1+c & -s \\ -s & 1-c \end{pmatrix}$$

with \tilde{Q} the diffusion matrix $^{\rm a}$ and coefficients $^{\rm b}$

$$a = \pm \sqrt{\frac{1}{2} \pm \frac{1}{2}\sqrt{1 - c^2 - s^2}}, \ d = c/2a, \ b = -s/2a.$$

^aK.Ohmi, K.Hirata, K.Oide, Phys. Rev. E **49**, 751 (1994) ^bE. Perevedentsev, private communication

A.Valishev

Beam size evolution at $\xi = 0.09$

VEPP-2000 E = 900 **MeV**

Round beam, complete model

Fourier spectrum of the dipole signal, $\xi = 0.06$.

Strong-strong simulation for VEPP-2000: $\beta^* = 6$ cm

Comparison of the sextupoles on and off options. E = 900 MeV

Strong-strong simulation for VEPP-2000: $\beta^* = 10$ cm

E = 900 MeV

Strong-strong simulation for DA Φ NE #1, parameters

Parameter	e^-	e^+
Horizontal tune	5.107	5.154
Vertical tune	5.148	5.212
Synchrotron tune	0.008	0.008
Horizontal emittance (m)	$0.62\cdot 10^{-6}$	$0.62\cdot 10^{-6}$
Vertical emittance (m)	$0.124 \cdot 10^{-8}$	$0.124 \cdot 10^{-8}$
Energy spread	$4 \cdot 10^{-4}$	$4 \cdot 10^{-4}$
Damping decrement (turns) horizontal	110,000	110,000
vertical	110,000	110,000
longitudinal	56,000	$56,\!000$
Beta function at IP (m) horizontal	1.7	1.7
vertical	0.035	0.035
Number of particles per bunch	$2\cdot 10^{10}$	$2\cdot 10^{10}$

DA\PhiNE #1: 1

Horizontal beam size (mm) vs. turns

Vertical beam size (μ m) vs. turns

Horizontal coherent beam-beam modes (mm) vs. turns

Vertical coherent beam-beam modes (μ m) vs. turns

Coherent spectra of the electron beam.

Coherent spectra of the positron beam.

Coherent beam-beam mode tunes vs. ξ (linear model).

Strong-strong simulation for $DA\Phi NE \# 2$, parameters

Parameter	e^-	e^+
Horizontal tune	5.154	5.154
Vertical tune	5.212	5.212
Synchrotron tune	0.008	0.008
Horizontal emittance (m)	$0.62\cdot 10^{-6}$	$0.62\cdot 10^{-6}$
Vertical emittance (m)	$0.124 \cdot 10^{-8}$	$0.124 \cdot 10^{-8}$
Energy spread	$4 \cdot 10^{-4}$	$4 \cdot 10^{-4}$
Damping decrement (turns) horizontal	110,000	110,000
vertical	110,000	110,000
longitudinal	56,000	56,000
Beta function at IP (m) horizontal	1.7	1.7
vertical	0.035	0.035
Number of particles per bunch	$2\cdot 10^{10}$	$\overline{2\cdot 10^{10}}$

Horizontal beam size (mm) vs. turns

DA\PhiNE #2: 2

Vertical beam size (μ m) vs. turns

Horizontal coherent beam-beam modes (mm) vs. turns

Vertical coherent beam-beam modes (μ m) vs. turns

Coherent spectra of the electron beam.

Coherent spectra of the positron beam.

Coherent beam-beam mode tunes vs. ξ (linear model).

Coherent synchrobetatron beam-beam modes

- We study the coherent dipole oscillations of colliding bunches in a circular collider
- The bunch length σ_s is comparable with β^* , and the beams are being bent during the collision
- Linearized beam-beam force (small oscillation amplitudes and the bunches are rigid in transverse direction)
- One transverse degree of freedom (small betatron coupling), no radiative effects

E.A.Perevedentsev and A.A.Valishev, Phys. Rev. ST Accel. Beams 4, 024403 (2001)

Calculation methods

1. Circulant matrix \rightarrow eigenvalue problem

2. Numerical tracking \rightarrow Fourier transform of the turn-by turn dipole moment

Synchrobetatron mode tunes vs. the beam-beam parameter ξ . Comparison of the circulant matrix hollow beam model (lines) with tracking of the Gaussian distribution (circles; number of particles in tracking was 1000).

Synchrobetatron beam-beam mode tunes vs. ξ . Comparison of measured (circles) and calculated (lines) data.

Synchrobetatron beam-beam mode increments vs. ξ for combined action of the beam-beam interaction and machine impedance (tracking). Equal bunch intensities, $\nu_{\beta} = 0.11$, $\nu_{s} = 0.03$, and the bunch length is $0.7\beta^{*}$. The constant wake, Q = 0.005, corresponds to the m = 0 mode tuneshift of

$$-3 \cdot 10^{-5} = -10^{-3} \nu_s.$$

Observation of coherent synchrobetatron modes

- Turn-by-turn high accuracy measurement of the vertical (or horizontal) dipole moment of a selected bunch.
- Direct observation of the transverse head-tail modes.

Instrumentation

- The system utilizes SR from the beam
- The light is gated turn-by-turn by a fast switch (e.g. Pockels cell) to separate single bunch or its part
- The beam image is focused into the plane of a movable screen
- The light which passed the screen is detected with a photomultiplier tube (PMT)
- The PMT signal is sampled with an ADC
- The stored array of data is Fourier-analyzed

Direct observation of the head-tail oscillation (proposal)

Possible applications

- Measurement of the betatron tune of the selected bunch without external excitation of the beam motion
- Detection of the dipole synchrobetatron modes
- Detection of the quadrupole coherent modes
- Evaluation of the beam-beam σ and π modes tune split