Status of the VEPP-2000 collider project at BINP.

Alexander Valishev

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Layout of the VEPP-2M collider

Increasing the Luminosity

- 1. Number of bunches
- 2. Bunch-by-bunch luminosity

$$L = \frac{\pi \gamma^2 \xi_y \xi_x \epsilon_x f}{r_e^2 \beta_y^*} \cdot (1 + \frac{\sigma_y}{\sigma_x})^2$$

Round beams:

- Geometric factor
- Beam-beam limit enhancement

Concept of round beams

Conservation of the angular momentum $M_z = yp_x - xp_y$

- Round cross-section of beams at IP
- Machine optics has rotational symmetry
- \rightarrow Motion in central field with additional integral of motion

reduces the transverse oscillations from 2D to 1D!

V.V.Danilov and E.A.Perevedentsev, Frascati Physics Series Vol. X (1998), p.321

Weak-strong simulation for VEPP-2M

Vertical beam size vs. the beam-beam parameter. Solid line - round beam, dashed line - flat beam.

Round beams at small machine

A.Burov, S.Nagaitsev, Ya.Derbenev, FERMILAB-Pub-01/060-T

Main parameters of VEPP-2000 (at 900 MeV)

Circumference, m	П	24.388
RF frequency, MHz	f_0	172.0
RF voltage, kV	V	100
RF harmonic	q	14
Momentum compaction	lpha	0.036
Synchrotron tune	Q_s	0.0025
$Emittances, m \cdot rad$	ϵ_x	$2.2 \cdot 10^{-7}$
	ϵ_y	$2.2 \cdot 10^{-7}$
Energy loss per turn, keV	ΔE_0	41.5
Energy spread	σ_E	$6.4\cdot10^{-4}$
β at IP, cm	eta^*	6.3
Betatron tunes	Q_x,Q_y	4.1, 2.1
Particles per bunch	e^-, e^+	$1.0\cdot 10^{11}$
Number of bunches		1
Beam-beam tuneshifts	$\overline{\xi_x,\xi_y}$	0.075, 0.075
Luminosity per IP, $cm^{-2} \cdot s^{-1}$	L_{max}	$1.0\cdot 10^{32}$

View of the VEPP-2000 collider

Layout of the VEPP-2000 storage ring

VEPP-2000 luminosity vs. beam energy

Current status of the VEPP-2000 construction

- Optics elements ready.
- Vacuum chamber ready.
- Power supplies ready.
- SC solenoids in production (prototype tested).
- Cavity in production.
- Control system of the old VEPP-2M is being rebuilt.
- Assembly should be finished by June, 2003.
- First beam tests by the end of 2003.

