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INTRODUCTION

The control of RF cavities with high beam loading is a subject of great con-
cern for the design and operation of high luminosity collider such as DAΦNE.
Perturbations of the accelerating voltage can generate undesirable beam be-
haviour, like large oscillations of the beam itself that could cause particles loss
by lack of longitudinal acceptance. To alleviate or even completely suppress
these effects, a proper control of the RF power amplifier is necessary. Pre-
liminary calculations have shown[1,2] that in DAΦNE it is possible to avoid
Sands and Robinson instabilities for any beam current up to 5 Amps by prop-
erly setting the RF system. The price to pay is that the stability region around
the working point reduces, especially for high currents, getting the machine
operations too sensitive to longitudinal transient oscillations.

In this note we shall study the stability and the pulse response of a pro-
posed feedback system sketched in Figure 1. The feedback loop automatically
generates the correct compensating signal[3], which  keeps the controlled pa-
rameter V constant. One can consider the RF feedback as a means to reduce
the output impedance of the RF amplifier: its effect is equivalent to
introducing a shunt resistance across the accelerating gap, the value of which
is inversely proportional to the loop gain. In such a way the total shunt
resistance can be reduced by a large factor, allowing a large beam current to
be stored in the ring[4]. The idea is the same as the cathode follower[5] with its
low output impedance that shunts the cavity.

i(t) H(s)

G

e -sτ

v(t)
+

-

Figure 1: RF feedback scheme.
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It is customary to analyze the RF cavity without feedback, in the vicinity of
the main resonance, as an RLC circuit, with a transfer function, in the domain
of the complex variable s=σ+jω,  described by:

H(s) = ω rRs

Q
 s
s2+2αs+ω r

2
 , (1)

where ωr is the resonant angular frequency, Rs is the shunt resistance, Q is
the quality factor of the cavity and α= ωr/2Q is the damping factor.

In Section 1 we shall study the stability conditions of the feedback system,
obtaining some relations between the delay τ and the cavity resonant angular
frequency ωr . In Section 2 we shall give an expansion for the pulse response
in the time domain; this response can be very useful for the study  of the tran-
sient phenomena in a cavity in presence of the feedback. Some considerations
about inserting this feedback system in a time domain simulation code on the
longitudinal dynamics of a beam will conclude, in Section 3, the paper.

1 - STABILITY CONDITIONS

Let us start by studying the stability conditions in the Laplace transformed
s-domain. A feedback circuit is stable if it can be established that its closed-
loop transfer function has no poles in the positive side of the s-plane. In
practice it is found more convenient to work with the open-loop gain function
rather than with the transfer function of the feedback system. In fact the first
one is directly measurable. Moreover in our particular case, the closed-loop
analysis would become very difficult because of the delay term exp(-sτ). The
open-loop gain function:

(s)= ω rRs

Q
 Gse-sτ

s2+2αs+ω r
2
  (2)

             

shows two simple poles with negative real part. Putting x=ω/ωr , the function
(2) can be rewritten in the dimensionless form:

F(jx)= G Rs 
jxe-jω rτx

1-x2 Q+jx
 . (3)      

Nyquist's criterion for stability states[6] that the feedback circuit is stable if
the plot of F(jx) does not enclose the critical point (-1,0) of the F(jx)-plane as x
varies from -∞ to +∞. The required plotting of F(jx) can be simplified by observ-
ing that the magnitude of F(jx) is an even function of x, while its phase angle is
an odd function of x; therefore, it is necessary only to plot F(jx) for positive fre-
quencies from x=0 to x=∞.

The Figure 2 immediately suggests that in the case ωrτ=0 (cavity without
feedback ring) the system is always stable.
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Figure 2: Nyquist diagram for ωrτ=0.

The magnitude of the function (3):

F(jx) = GRs 
x

1-x2 2Q2+x2
  ,  

(4)
      

points out that when GRs<1 the system described by equation (2) is always
stable, being |F(jx)|<GRs. On the contrary, if GRs>1, the problem of the sta-
bility is not so easy to solve, the stability depending on the values of GRs, Q
and ωrτ . In Figure 3  an unstable case is shown.

Re

Im

Figure 3: Nyquist diagram for ωrτ=2π 500, GRs=10, Q=5000.
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Thus, if GRs>1, one can formulate the stability problem in this way: let us
say ξk (k=1,2,...) the zeros of the imaginary part of F(jx); the system can be
considered stable if  the real part of F(jx), evaluated for x=ξk , is greater then -
1. So, splitting equation (3) into its real and imaginary part:

Re F(jx)  = GRs 
x 1-x2 Qsin ω rτx +x2cos ω rτx

1-x2 2Q2+x2
 ;

Im F(jx)  = GRs 
x 1-x2 Qcos ω rτx -x2sin ω rτx

1-x2 2Q2+x2
 ,

after some algebraic manipulations, the fundamental system for the stability
can be written as1

GRscos ω rτx  > -1 ,  (5)

tg ω rτx  = Q 1-x2

x
 .  (6)       

It is worth noting that one has to solve the transcendental equation (6)
first, and then choose the parameters in order to verify the inequality (5). This
problem has not an elementary solution; in the following we shall discuss
possible approximate solutions and inequalities to fix the boundaries of the
stability problem. The fundamental system (5) and (6) can be reformulated
using the new variable u=ωrτx, getting:

GRscos(u) > -1 ,  (7)             

g(u) = Q
ω rτ

 
ωrτ 2-u2

u
 . (8)

                                                
1The same result can be obtained using the Pontriagin's theorem[7].The exponential
polynomial

P s,es  = esτ s2 +2αs +ωr
2  + G ωrRs

Q
 s  ,

when s=jω  can be splitten into the real part and the imaginary one. Pontriagin's stability
criteria states that the time lag system is stable if, and only if, all the zeros ξ, of the real part
are real, simple, and  the product between the first derivative with respect to ω of the real part
and the imaginary part has to be negative for every such zero.
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The problem has been written in this way because the functional depen-
dence of the solution has been divided into two parts: in the equation there are
only the parameters Q and ωrτ, while the only GRs is in the inequality. An
example of graphical solutions of equation (8) is given in Figure 4.
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Figure 4: graphical solution of equation (8).

Another way to discuss the stability of our system, i.e. another way to read
Nyquist's criterion, is the following: since the exponential function due to the
delay does not change the magnitude of the open-loop gain function [equation
(4)] but it displaces the phase of all the points of a angle ∆ϕ = ωrτx, the range
of x, potentially dangerous, is the one where F(jx) exceeds unitary circle. For-
mally, this range is given by |F(jx)|>1, or:

 - 
GRs

2-1
2Q

 + 1+ 
GRs

2-1 2

4Q2
 < x < 

GRs
2-1

2Q
 + 1+ 

GRs
2-1 2

4Q2
  ..  

(9)
  

Therefore one could draw a plot in the plane of the complex function F(jx)
with x varying according to the inequality (9); the system is stable if the plot
passes through the real axis only one time for positive values, otherwise it is
unstable (Figure 5).
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Figure 5: possible situations.
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An useful approximation of equation (9) can be given if

GRs» 1 ,            GRs

Q
 « 1 ;  (10)

under these hypothesis, that we shall use frequently in the following, one can
write:

1 - GRs

2Q
 < x < 1 + GRs

2Q
 . (11)

We are now ready to compute a first instability region. Let us call "a" and
"b" the two roots of the equation |F(jx)|=1 given in (9) and ϕ(a) and ϕ(b) the
corresponding phase angles; the system is certainly unstable if the absolute
value of the difference of these two  phase angles is greater than 2π.  Because
the phase angle is:

ϕ(x) = π
2

 - ω rτx - tg-1 x
Q 1-x2

 ,              (x>0),

making use of the approximations (10), it is not so difficult to obtain2 from
|ϕ(a) -ϕ(b)| >2π

ω rτ > 3π + 2
GRs

 Q
GRs

 .  (12)

Coming back to the fundamental system (7) and (8), we have to discuss in
more details its solutions, trying to impose other inequalities for stability. Two
cases have been considered, and even though they cover all the possible
values of ωrτ, they just give two regions into which we are sure to have stability
or instability. Outside these regions we can not say anything. The first case
studied is valid when

2πN - π
2

 < ω rτ < 2πN + π
2

 , (13)

with N = 0,1,2...  .The (13) can be written as:

 ω rτ = 2πN + απ
2

 , (14)

with |α| < 1. In this case the closest solution of the equation (8) to ωrτ, gives
a positive cosine, so that the equation (7) is certainly verified.

                                                
2 Only for shortness we do not derive the complete expansion, using the exact roots given in
equation (9).
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Figure 6: stability case.

The possible dangerous solutions, as shown in Figure 6, are then the (1)
and (2). If the two roots of the equation |F(jx)|=1 are within the interval

2πN - π
2

  < u <  2πN + π
2

 ,   (15)
            

this means that |F(jx)| is bigger than 1 in a region where the cosine function
is positive. As a consequence we have stability for the system. Using the for-
mulae, we can say that, if the inequality (15) is verified, we are sure to be sta-
ble, that is:

2N-0.5
2N-0.5 α

  ≤  - 
GRs

2-1
2Q

 + 1+ 
GRs

2-1
2

4Q2
 ;

(16)

GRs
2-1

2Q
 + 1+ 

GRs
2-1

2

4Q2
   ≤  2N+0.5

2N-0.5 α
 .

It is worthy to mention that if N→∞ (ωrτ→∞), the previous inequalities are
gradually less verified whatever be the values of Q and GRs. Nothing can be
said if the roots of the equation |F(jx)|=1 lie outside the interval given by (15).

In the second case, i.e. when

(2N+1) π - π
2

 < ω rτ < (2N+1) π + π
2

  (17)
          

that is
ω rτ = (2N+1)π + απ

2
 , (18)

the most dangerous solution of the equation (8) is the closest to the value ωrτ,
as shown in Figure 7, since now the cosine function is negative.
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Figure 7: instability case.

Named E1 and E2 the two values within which GRs<1 (if they exist), then,

if

E1 < ω rτ < E2 , (19)         

that means

(2N+1)π - cos-1 1
GRs

 < ω rτ < (2N+1)π + cos-1 1
GRs

 , (20)
        

we are sure to have instability. The inequality (20) can be written as

α  < 2
π  cos-1 1

GRs
 . (21)

Let us note that if GRs→∞, then the instability occurs for every value of α ,
i.e. all over the interval around  (2N+1)π ; so it is very dangerous to work in
these conditions. As in the previous case, nothing can be said if the (21) is not
satisfied.

2 - PULSE RESPONSE

The closed-loop transfer function can be easily obtained in the s-plane
from Figure 1. Such a function can be written as:

Hc(s) = V(s)
I(s)

 = H(s)
1 + Ge-sτH(s)

 , (22)
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where the subscript c means closed-loop. We shall find an expansion of the in-
verse Laplace transform

hc(t) = L-1 Hc(s)  ,  (23)             

i.e. the pulse response of the feedback system, making use of the well known

expansion[8]

1
1+z

 = -1 n zn∑
n=0

∞
 ,          z  < 1  . 

(24)
                  

Substituting (24) in the definition (22)  and using the change  s=pωr , the
closed loop function becomes:

c pω r  = -1 n Gn e-nτpω r Hn+1 pω r∑
n=0

∞
 , (25)

where3

G e-τpωr H pω r   < 1 .

Equation (25) implies we need to find the inverse Laplace transform of the
infinite set of functions:

Fn(p) = p

p2 + p
Q

 + 1

n+1 , 
(26)

   

that shows two poles for

p0 = 1
2Q

 -1+j 4Q2-1  = j ejϕ ;

p0 = 1
2Q

 -1-j 4Q2-1  = -j e-jϕ , 

where we introduced the phase angle ϕ , defined as

tg ϕ  = 1

4Q2-1
  .

                                                
3It will be shown in the Appendix that this inequality, strictly speaking, is not necessary.
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It has to be noted that the phase angle ϕ vanishes if  Q→∞ . The technique
of partial fractions[6]  is powerful to expand the functions (26) as:

Fn(p) =  Ak

p-p0
k
 +  Ak

p-p0
k

 ∑
k=1

n+1
 , (27)

             

where the expansion coefficients Ak  are given by the well known formula[10]

k = 1
(n+1-k)!

 p-p0
n+1 Fn(p)  p=p0

 (n+1-k) . 
(28)

   

Equation (28) , after some algebraic manipulations, can be written as

Ak = p0
k

p0-p0
n+1

 Ck(n)         k=1,2,...,(n+1)  ,  
(29)

where Ck(n) is a short form for

Ck(n) = Ck(n)  ejϕk(n) = (n+1) -1 r

r!
 (n+r)!
(k+r)! (n+1-k-r)!

 p0

p0-p0

r∑
r=0

n+1-k
 

 

,30)

Finally equations (29) and (30) , together with the causality of the inverse
Laplace transform of  Fn(p) , enables us to conclude that the pulse response of
the feedback system in the range Mτ ≤ t < (M+1)τ is:

c(t) = 2ωrRs

4Q2-1
 - GRs

4Q2-1

n
 qn(t-n τ)∑

n=0

M
 , (31)

where the functions qn(t) are defined as:

qn(t)=exp - ω rt
2Q

 Ck(n)  
ω rt

k-1

(k-1)!
 sin ω rt

2Q
4Q2-1 +kϕ-(n-k) π

2
+ϕk(n)∑

k=1

n+1
 .

3 - CONCLUSIONS

In this paper we have analyzed a possible feedback system for a RF cavity
with high beam loading. The study of the stability has been performed in order
to find the regions where the feedback parameters (i.e. loop gain and time de-
lay) should be defined.
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Furthermore it has been worked out the response to a single pulse that
gives us the possibility of developing the cavity voltage in the time domain
taking into account both the driving and the beam loading voltage.

This last analysis has been performed with the aim of developing a time
domain simulation code on the longitudinal beam dynamics.
         

         
APPENDIX

The representation in the time domain of the pulse response of a RLC cir-
cuit comes from equation (1) and it is[8]
         

(t) = 2ω rRs

4Q2-1
 cos ω rt

2Q
4Q2-1  + ϕ  exp - ωrt

2Q
 u(t)  ,  

(A1)
  

         
where u(t) is the unit step function and the other symbols are the same used
previously; this expansion gives also the response of the feedback circuit for
0 ≤ t < τ , because during this period the feedback ring does not work. If  Q » 1 ,
equation (A1) assumes the approximate but simple form
         

h(t) ≈ ω rRs

Q
 cos ω rt  exp - ω rt

2Q
 u(t)  .

The pulse response of the feedback scheme can be expressed by mean of
equation (22) in the s plane, or making use of the convolution theorem[9];
putting  i(t) = δ(t)  to compute v(t) = hc(t) in Figure 1, the integral equation for
the pulse response can be written as
         

hc(t) = h(t) - G h(t-u) hc(u- τ) du ,          (t ≥ τ) .
τ

t

 (A2)

         
It is interesting to note how equation (A2) takes into account the causality

of the system, suggesting that we can compute the output hc(t) without any
limitation, only knowing the solution during the initial τ seconds. Thus a re-
cursive solution can be found by splitting the upper integration bound t into a
certain number of multiple of τ. In this way we can decide to compute, for ex-
ample, the solution in the interval τ ≤ t < 2τ ; the knowledge of  hc(t)

hc(t) = h(t)          when 0 ≤ t < τ ,

implies immediately that[8]

hc(t) = A exp - ω r(t- τ)
2Q

 .

. cos ω0t+ϕ  - A
2ω0

sin ω0(t- τ)  - A
2

(t- τ)cos ω0(t- τ)+2ϕ  ,
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where for shortness we called

ω0 = ω r

2Q
  4Q2-1   ,

A = 2ω rGRs

4Q2-1
  exp ω rτ

2Q
  .

If one continues the iterations, the previous solution (31) can be again ob-
tained.
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